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FOREWORD

The Navy Personnel Research and Development Center is the lead
laboratory for the Enhanced Computerized Aptitude Testing (ECAT) project. The
purpose of the project is to assess the cost/benefits of adding new aptitude
tests to the Armed Services Vocational Aptitude Battery (ASVAB). This report
solves the important problem of how to combine the results from different
studies with different criteria in order to arrive at estimates of the
incremental validity of adding new tests to the ASVAB. The issue is of
practical importance because many of the samples under investigation are too
small to allow firm conclusions to be drawn unless their data are combined
with those of other samples. This report will be useful both to military
personnel researchers and to a broad civilian research community concerned
with the validity of aptitude tests.

This effort was conducted under the ECAT project sponsored by the Office
of the Assistant Secretary of Defense (Force Management & Personnel, Military
Manpower & Personnel Policy). It was funded by Headquarters, U.S. Military
Entrance Processing Command (USMEPCOM) with U. S. Army Operations and
Maintenance funds (MIPR 89-R-114). The report was written under the Army
Research Office contract DAAL03-86-D-0001, TCN 89-517, D.O. 1723 with Battelle
Memorial Institute.

John H. Wolfe was the Contracting Officer's Technical Representative
(COTR) for the task.

THOMAS F. FINLEY RICHARD C. SORENSON
Captain, U. S. Navy Technical Director (Acting)
Commanding Officer
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SUMMARY

Problen

The Navy Personnel Research and Development Center (NPRDC) has developed
new aptitude tests for possible addition to the Armed Services Vocational
Aptitude Battery (ASVAB). A computerized version of the ASVAB (the CAT-ASVAB)
was also developed. Validity studies are currently underway to determine
whether the new tests on the CAT-ASVAB produce an increment in validity
computed using a job performance criterion. However, few single sites
(schools) have a large enough sample to produce a sufficiently powerful test
for the validity increment expected. Consequently, it will be necessary to
pool information across sites to obtain a sufficiently powerful test for
incremental validity. The methods for such pooling had not previously been
developed.

Objective

The objective of this research was to develop statistical methods for
pooling estimates of incremental validity across independent studies (sites),
estimate the standard errors and a confidence interval for the pooled
incremental validity, and test the statistical significance of the incremental
validity.

Approach

A search of the literature on combining statistical estimates was
conducted to determine applicable methods. The statistical literature on the
sampling theory of multiple correlations was also searched. Mathematical
(analytic) methods were used to derive procedures that were not previously
available.

ResdL

Methods for obtaining the sampling distributions of incremental
validities (the differences between multiple correlations) from the same and
from independent samples were developed. These results were applied to yield
methods for pooling incremental validities, testing the statistical
significance of pooled validities, and constructing confidence intervals for
the pooled incremental validity. They were also applied to a power analysis
of the pooled test for incremental validity.

Cond-ion

Pooling estimates across sites provides a viable strategy for estimating
the incremental validity. If a single sample is used in each site to assess
incremental validity, the test for the statistical significance of the pooled
estimate will have adequate power to detect increments in validity of .02 with
pooled sample sizes of N a 4,000.
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R P mnmdatio

Estimatas of the incremental validity of alternative test batteries
should be baewd on pooled estimates derived from several samples, using the
methods outlirved in this report.
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INTRODUCIMON

Problem

Current practice involves the use of a battery of tests to predict a
criterion. We want to determine whether adding another battery of tests to
the operational battery improves validity and by what amount. Because the
increment in validity expected from the new tests is small (e.g., .02), a
sample size of several thousand may be needed to detect the validity increment
with high statistical power. The tests are used in a variety of sites
(schools), but few single schools have sufficiently large enrollments to carry
out a powerful study of the improvements in validity that might result from
the addition of the battery of new tests.

Alternatively, current practice may involve the use of one test battery
to predict a criterion and we may wish to know if an alternative test battery
has greater predictive validity. For example, we may wish to compare the
validity of a paper and pencil version of a test battery to that of a
computerized adaptive version of the same test battery.

Objective

In these situations, pooling of information on incremental validity
across several sites (e.g., schools) may provide a way to test the increment
in validity with high statistical power and to estimate precisely the
improvement in validity that results from the addition of the new tests or the
use of the alternative tests. It is assumed that the criterion scores used in
different sites are too dissimilar to permit combination of raw data. This is
likely to be the case when the criteria are training grades, performance
ratings, or simulations of work skills that are unique to the individual
school site.

This report develops a method for combining estimates of incremental
validity across sites to obtain the most precise estimate of the average
incremental validity. It also provides procedures for estimating the standard
error of the incremental validity, for establishing confidence intervals about
the incremental validity, and for testing the combined significance of the
validity-study results. Finally the report shows how to estimate the variance
in incremental validity parameters and how to test its statistical
-ignificance.

The Navy Personnel Research and Development Center (NPRDC) has been
engaged in a project to evaluate new aptitude tests that measure abilities not
covered in the existing battery of ten tests in the Armed Services Vocational
Aptitude Battery (ASVAB). It has also been engaged in the development of a
computerized adaptive version of the ASVAB called the CAT-ASVAB. Validity
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studies are currently underway to determine the magnitude of incremental
validity obtained by using the new tests as supplements to the ten operational
ASVAB tests that are used as predictors of school and job performance. Navy
studies should also provide data on the incremental validity of the CAT-ASVAB
over the operational paper and pencil version of the test. The present report
suggests methodology for carrying out studies of incremental validity in
connection with these recent NPRDC developments.

INCREMENTAL VALIDITY

Given a single site, we might define the validity of test battery 1 as
the multiple correlation R1 of the a tests in that battery with the criterion.
Define the validity of test battery 2 (which may consist of tests in battery 1
plus some new tests) as the multiple correlation R2 of the tests in battery 2
with the criterion. It is helpful to distinguish the true or population
values of validities from their sample estimates. Hence denote the sample
estimates of the validities by R1 and R2 and denote the population values
corresponding to these sample estimates by P1 and P2. The idea of incremental
validity also arises in connection with the comparison of two alternative test
batteries; for example, a paper and pencil test battery versus a computerized
adaptive test battery. In this case, the two test batteries may not share any
single test. in this case, the validities R, and P1 are the sample and
population multiple correlations of the a tests in battery 1 with the
criterion. The sample and population validities of test battery 2, R2 and P2 '
respectively, are the sample and population multiple correlations of the b
tests in battery 2 with the criterion.

The two multiple correlations that are used as validity coefficients are
stochastically dependent when they are computed from measurements on the same
sample of individuals. The correlations are stochastically independent when
they are computed from independent samples.

Testing tMe Statis6tal Signifcance of Incremental Validity at a Single Site

At each site, the incremental validity study compares a sample validity
R, with another sample validity R2 to determine whether P2 is larger than Pl.
Formally this involves a test of the hypothesis that the population validity

P2 associated with R2 exceeds the population validity P1 associated with Rl;
that is, a test of the hypothiesis

H0 : P2 = P1 1

versus the alternative that P2 > Pl.
Since P1 and P2 are nonnegative, P2  p1 implies that P2  ; P2 ; therefore

a test for P2 > P 1 is identical to a test for P2 > P2. The details of the
hypothesis test depend on whether the same sample is used to compute both R,
and R2 or whether R, and R2 are computed from independent samples.

Note that the artifacts of criterion unreliability and restriction of
range do not alter the procedures for testing hypotheses about incremental
validity.
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R, and I. Computed from the Same Sample

Case 1. If R1 and R2 are computed from the same sample and if the
predictors of R, are a subset of the predictors for R2 , then the appropriate
test for incremental validity is the usual test for change in multiple
correlation. Let a be the number of tests used as predictors in Rl, let b > a
be the number of tests used as predictors in R2 , and let n be the sample size.
The test statistic is

(R2 - R1)(n - b - 1)
F = , (1)

(1 - R -)(b

which is compared to the critical value for an F distribution with (b - A) and
(n - b - 1) degrees of freedom.

Case 2. If R, and R2 are computed from the same sample but their predictor
sets are disjoint (e.g., when R, is computed from a pre-enlistment test
battery and R2 is computed from a post-enlistment test battery), the usual F-
test for change in multiple correlation cannot be used. Let a be the number
of predictors used to compute R1 and b be the number of predictors used to
compute R2 . Here b need not be larger than a. A large sample test for the
significance of the incremental validity uses the statistic

X 2  1) 1 (2)

where A3 and Ri are the corrected squared multiple correlations for the two
predictor sets and ;,(d*) is the asymptotic variance of the difference in
corrected squared multiple correlations. Much of the mathematical develo ment
in this paper will be devoted to estimating 2(d*). The test statistic XF
(Equation 2) has a chi-square distribution with one degree of freedom when
there is no incremental validity (but both of the validities are nonzero) and
the sample size is large. The hypothesis of no incremental validity is
rejected at significance level a if the computed value of X exceeds the
100(1-a) percentile point of the chi-square distribution with one degree of
freedom.

R, and R2 Computed from Independent Samples

If R, and R2 are computed from independent samples (e.g., when R, is
computed from the scores of subjects who took a paper and pencil test battery
and R2 is computed from the scores of subjects who took a computerized
adaptive test battery), the usual F-test for change in multiple correlation
cannot be used. Let a be the number of predictors used to compute R1 and b be
the number of predictors used to compute R2 . Here b need not be larger than
a. Let n, be the sample size on which R1 is based and let n2 be the sample
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size on which R2 is based. A large sample test for the significance of the
incremental validity uses the statistic

(P2 - Rl)2

x2 = L (3)

(1 - R1) 2  + (1 - RV)2

n, n2

The test statistic (Equation 3) has a chi-square distribution with one degree
of freedom when there is no incremental validity (but both of the validities
are nonzero) and both n, and n2 are large. The hypothesis of no incremental
validity is rejected at significance level a if the computed value of X2
exceeds the 100(1-a) percentile point of the chi-square distribution with one
degree of freedom.

The design that involves computing R, and R2 from the same sample yields
more powerful tests for incremental validity. Consequently it is the design
of choice wherever it is feasible.

hdkzs of Incranental Validity

Two indices of incremental validity might be computed. One index is
simply the difference in validities. That is, the index, d, is the difference
in (unsquared) multiple correlations. The sample value of this index is

d = R2 -R

and the population value is
6 = P 2 - Pi.

The index is conventionally used in personnel psychology and is, for example,
used in the style of utility analyses described by Cronbach and Gleser (1965).

An alternative index of incremental validity is the R-squared change:
the difference in squared multiple correlations. The sample value of this
index is

d* = R2 -

and the population value is
6" = P•- P•.

This index has the virtue that it is interpretable in terms of "additional
variance accounted for" by the new test battery.

USING COMBINED SIGNIFICANCE TO STUDY INCREMENTAL VALIDITY

One of the oldest methodologies for combining the results of independent
studies uses the observed significance levels (p's or probabilities) from
series of significance tests. Tests of combined significance utilize the
probability values from series of studies examining the same research
question. Several combined significance methods have been outlined in the
social-science literature by Rosenthal (1978) and previously by Mosteller and
Bush (1954).
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Although more than 15 distinct methods for summarizing observed
probabilities have been proposed, the methods share some similarities. Table
1 lists the methods and shows that they fall into two major groups. One group
comprises tests based on the fact that the observed significance levels are
uniformly distributed under the null hypothesis of "no effect" in any study.
The other methods involve transformations of the observed significance levels
to other statistical variables (e.g., probabilities transformed to normal
variates). All of the methods listed in Table 1 provide tests of the
same null model for the series of studies. We outline that model for studies
of incremental validity below.

Table 1
Methods for Sunmuaning Independent Significance Values

Methods Requiring Transformation of p Values
Indicator Function Methods

Wilkinson method (Wilkinson, 1951)
Tippett method (Tippett, 1931)
Sign test
Chi-square method

Inverse Probability Methods

Inverse Normal Distribution Methods
Stouffer method (Stouffer et al., 1949)
Weighted Stouffer method
Mean z method

Inverse t Distribution Method
Winer method (Winer, 1971)

Inverse Chi-square Distribution Methods
Inverse chi-square method
Weighted inverse chi-square method

Logistic Function Methods
Fisher method (Fisher, 1932)
Good (weighted Fisher) method
Logit method

Methods not Requiring Transformation of p-values

Sum of p's method
Mean p method

Model for Study Result

Suppose that there are k independent validity studies, each yielding a
test of incremental validity. We consider as illustration the situation in
which a single set of subjects provides the information on incremental
validity within every study (i.e., the estimates of incremental validity are d
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and d* as in our previous notation system). Each study in the series examines
"a test of the difference in validity between one battery including a tests and
"a second battery of b tests (where b > a). Each study might represent a
training school or site for which it is useful to predict job performance.

As in the case in which parametric estimates of incremental validity are
of interest, the ith study is assumed to provide a test of either 6i or 6i*
In study i, 6i = Pi2 - Pil is the difference in unsyuared multiple
correlations in the population, and 6i - Pil is the difference in
squared multiple correlations. The null hypothesis (the model of no added
validity) for the ith study would be either

H0  : 6 i = 0,
or equivalently H0  : 6i = 0.

In each study, the usual F-test for R-squared change provides a
significance test of the null hypothesis based on the sample estimate:$ of
incremental validity. The F statistic for incremental validity for a sample
of size n from a single study or school is given by Equation 1 or

(R2 - R1)(n - b-l)
F =

(1 -R2)b-a

This statistic is distributed as a central F value with (b - a) and (n - b
- 1) degrees of freedom under the null model of no contribution to validity
from the added test battery in the study. The significance value from this
test is the probability (p) of observing a value equal to F or larger in the F
distribution with (b - A) and (n - b - 1) degrees of freedom.

From each F-test is obtained an observed upper-tail significance level.
The observed probability from the ith study is pi, and the data used in the
combined significance tests are the k one-tailed probability values
P11 P2' ...', Pk"

Null Hypodhsis

The null hypothesis for tests of combined significance is an omnibus
hypothesis, namely that the null hypothesis is true in every one of the
studies in the synthesis. Thus the overall null model for any combined
significance test for validity studies is

H0 : 61 = 62 = ... = 6k = 0,
in the case of differences in multiple correlations, or equivalently

H0 : 61" = 62* 6k*

when differences in squared correlations represent added validity. Regardless
of the parameter(s) used to represent validity, the null model for the series
of studies is that the additional tests do not increase validity in any
population studied.

6



One assumption of the combined significance methods is that the
alternatives to the null hypothesis are one-sided. Typically this assumption
appears as a restriction that the parameter tested in each study cannot be
negative, and it leads to the condition that only one-tailed significance
values are used in tests of combined significance. In some cases, this
restriction requires redefining the parameters of the hypothesis for each
study. For example, a hypothesis might be restated by defining the parameter
of interest as e• rather than 0, if both negative and positive 0 values were
interesting. In the case of validity studies, the alternative hypothesis is
naturally one-sided, because additional tests can only increase the validity
of prediction in each population, not decrease it.

Though the null hypothesis for the combined significance summaries is
quite simple, deviations from the null hypothesis can occur in a variety of
different ways. Thus, the interpretation of a rejected null hypothesis is not
completely straightforward (see also Becker, 1987).

Let us consider the validity-study context. One way that the null model
can be false is if all populations studied show increased validity because of
the added tests. However, the null model is also false when a single
population shows an increase in validity and the others do not. Both of these
outcomes should lead to the rejection of the null hypothesis based on a test
of combined significance, but they represent situations that are qualitatively
very different.

Additionally, the combined significance tests themselves perform
differently with regard to the detection of these various patterns of outcomes
(i.e., different alternatives to the null model). Statistical theory (e.g.,
Oosterhoff, 1969) has shown that none of the combined significance tests is
uniformly most powerful against all alternative hypotheses. Empirical results
from simulation (Monte Carlo) studies (e.g., Becker, 1985; George, 1977)
provide some guidelines for the selection of a test procedure and show that,
in some cases, differences in power among tests are slight. However,
optimally one's choice of a statistical procedure should depend on both the
nature of the expected (or interesting) outcomes of the series of studies and
the behavior of the available tests.

Combined Significance Methods

Rosenthal (1978) reviewed eight combined significance tests, and there
are others (e.g., Mudholkar & George, 1979). We present two combined
significance methods. One is the method most highly recommended by Rosenthal--
the Stouffer method, which is the "method of adding z's" described by
Stouffer, Suchman, DeVinney, Star, and Williams (1949). The second method was
suggested by Fisher (1932).

We have selected these two tests because power studies (Becker, 1985;
Koziol & Perlman, 1978) have shown that these tests perform in a complementary
manner. Specifically, the Stouffer test appears to have good power to detect
alternatives in which all the populations studied show roughly equal effect
sizes. In the validity-study context, this would be a situation in which the
increases in validity were roughly the same for all schools or job-groups
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studied. Fisher's method has higher power to detect individual (or small
numbers of) discrepant populations. Such patterns might arise when the added
test batteries increased validity in only a few schools.

Stouffr's Method

Stouffer's test of combined significance (Stouffer et al., 1949) is
obtained by summing the standard normal deviates or z values associated with
the values P, through Pk. The sum is divided by the square root of k (the
number cf p values), which is the standard deviation of the sum of the k
standard normal deviates. The test statistic for this ratio is

k
zs £ (pi) , (4)

i=1

where z(pi) = 0-1 (pi) represents the standard normal deviate associated with
upper-tail probability Pi from the ith study. This test can be computed using
the mathematical and statistical functions of programs such as SAS (1990),
Minitab (Ryan, Joiner, & Ryan, 1985), or SPSS (1988). FORTRAN programs can
also be written to produce the combined significance values. A listing of a
SAS program appears in Appendix A.

The statistic in Equation 4 is compared with upper-tail critical values
from a table of the standard normal distribution. The test is not conducted
as a two-sided test because negative Zs values do not have a meaningful
interpretation in this context. Negative Zs values result from combinations
of negative z(pi) values, which in turn result from p values larger than 0.5;
that is, from nonsignificant individual test results. Thus large negative Z.
values do not represent interesting deviations from the conditions specified
by the null hypothesis for the series of studies.

Fhas Method

A second widely used method for combining probabilities was suggested by
Fisher (1932). A related version of this test was also independently
described by Pearson (1933). The method requires the transformation of the
independent probabilities via the log function. These values are multiplied
by the constant -2, which produces (under H0 ) a set of identically distributed
chi-square variates, each with 2 degrees of freedom. The Fisher test
statistic is

k
CF - -2 £ log (pi), (5)

i= 1

which is a chi-square variable with 2k degrees of freedom under H0 . The
computation of the Fisher test is also shown in the SAS program in Appendix A.
If the probability values associated with the significance test for change in
multiple correlation are available, then Fisher's test can also be computed
using most spreadsheets (which typically feature the log function).
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Use of Multiple Combined Significance Tests

Some authors have recommended the use of several combined significance
tests together. Use of multiple combined significance tests and use of
combined significance methods together with techniques for pooling or
estimating common study results is fairly common, but it leads to slightly
elevated levels of Type I error. Elevated error rates occur when several
combined significance summaries are applied because they are based on the same
data (the p's). Those data are not independent of the estimates of study
outcomes (e.g., incremental validities) as well. The usual Bonferroni method
(Miller, 1966) can be applied to protect the overall significance level of the
set of tests if it is necessary to compute several combined significance
summaries.

Validity Studies Based on Independent Samples

Occasionally validity studies compare R or R2 values computed for
independent samples of subjects. In such cases, the test of incremental
validity in the individual studies will not be the F-test for change in
correlation.

However, combined significance methods can be applied to the
probabilities from tests based on independent samples in the same manner
described above. The SAS routine in Appendix A would need to be modified by
replacing the computed F-test with the X2 test described for use in individual
validity studies based on independent samples. This is the test given in
Equation 3. In such cases, the probability values p, through Pk would be
obtained from the series of X2 tests from the k schools. Computation of the
combined significance tests would proceed exactly as outlined above.

Furthermore, the nonparametric form of the combined significance methods
does not preclude combining p's from different validity-study designs (i.e.,
p's from tests based on dependent samples and p's from independent samples).
However, in order for the summaries to be most meaningful, all studies should
examine the same hypothesis (or very similar hypotheses) about incremental
validity.

POOLING ESTIMATES OF INCREMENTAL VALIDITIES

Correcting Incrnemetal Validities for Artifacts of Restriction of Range and Criterion Unrdiability

Although the incremental validity estimates d or d* may be of interest
in a validity study at a single site, they may not be directly comparable
across sites. The reason is that these indices of incremental validity in a
site are attenuated by range restriction and the unreliability of the
criterion variable. Since range restriction and criterion reliability are
artifacts of the design of the validity study, one could say that correction
of estimates for artifacts is necessary before pooling the estimates,
following the validity-generalization tradition (Schmidt & Hunter, 1977).

An alternative characterization is to say that the estimates d and d*
from validity studies at different sites are actually estimating different

9



quantities. For example, dl in study I estimates the population value 61 of
the difference between two (multiple) correlations of test batteries with an
unreliable criterion in a restricted population of test scores. The value d2
in study 2 estimates the population value 62 which is the difference between
multiple correlations of test scores with a different criterion (and hence
criterion reliability) than that of study 1 in a different restricted
population than that of study 1. The estimates dI from study I and d2 from
study 2 estimate conceptually different parameters 61 and 62. That is, the
parameters 6, and 62 arise as descriptions of different populations.

It does not make sense to pool estimates of different parameters. Hence
we would not pool dl and d 2 directly. Instead we specify a single parameter
that might be estimated from each study. Perhaps the simplest parameter to
estimate from each study is the validity increment that would be obtained in
the unrestricted population (e.g., the total applicant pool) if the criterion
were perfectly reliable. By computing an estimate of this quantity in each
study, all studies will be estimating the same conceptual parameter and hence
pooling across studies will be sensible. If such a quantity cannot be
estimated in each study, an alternative to pooling is the use of nonparametric
combined significance summaries, as described above.

Several potential approaches to correction of estimates for
unreliability and restriction of range can produce the desired estimates.
They involve a combination of the correction for attenuation due to
measurement unreliability (e.g., Lord & Novick, 1968, p. 70) with a correction
for attenuation due to restriction of range. Perhaps the most elegant
correction for the effects of range restriction on correlations is that based
on the multivariate correction of the covariance matrix given by Lawley
(1943). Unfortunately, it is not easy to derive the effects of this
correction on the variance of the "corrected" correlations when the
covariances that enter into the correction are themselves uncertain. However,
this correction could be used and its effect treated as a multiplicative
constant. While this would effectively ignore the uncertainty introduced into
the estimated correlations by the correction for range restriction, the
effects of this uncertainty are likely to be relatively small. Moreover the
Lawley correction permits the operational test scales that are the actual
basis of the selection to be treated as explicit selection variables while the
criterion and test scales not involved in determining selection are treated as
incidental variables whose range is affected by selection on the other
variables.

Two other alternatives are less satisfying. One is to estimate range
restriction on the criterion (outcome) variable and to correct the
correlations via the univariate (Spearman) approach (e.g., Lord & Novick,
1968, p. 145). This approach yields results that are mathematically
equivalent to those from the Lawley correction, but it requires knowledge of
the criterion variance in both the restricted and unrestricted populations.
This is usually unrealistic. A second alternative is to estimate, for each
multiple correlation, the linear combination of predictors that has the
highest correlation with the criterion (i.e., the predicted score yielded by
the regression equation). Compute the variance of this composite in the
restricted and in the unrestricted populations, estimate its restriction of
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range, and apply the Spearman correction. Since this alternative involves a
considerable amount of computation, it is not recommended.

Let A, and A2 denote the sample multiple correlations R, and R2 after
correction for restriction of range via the Lawley correction, and define the
relative correction of R, and R2 (which we treat as a known constant for a
given site) as

=

and
c 2 = A2 /R 2 .

Let P1 and P2 be population values of the multiple correlations between test
batteries 1 and 2, respectively, and the true score on the criterion in the

unrestricted population. Sample estimates R, and R2 of P1 and P2'
respectively, are

R, = Cl R l f/y = Ro /lY , (6)

2= c2R2 IVY -A2 IVy(7

where y is the reliability of the criterion, which is assumed to be known.
The corrected correlations Ri and.R2 can be used to construct estimates a and
a* of incremental validities-6 = P2 -- P1 and 6* = A2 P• in the unrestricted
population via

a A 2 - i

and a* A2 - i
Then P I =clPI¢

and similarly,

2= c 2 P 2/VY

Cormtifn Incranatal Validitie for Shrinkage

Sample estimates of multiple correlations are biased estimators of the
population multiple correlation. The bias depends on the sample size n and
the number A of predictor variables. The bias in R2 as an estimate of P 2 is
approximately

a(l-P2 ) 2(n-a-l)P 2 (1-P 2 )

BIAS(R 2) E(R 2 ) p =

n-i n2_1
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where the approximation is obtained by ignoring terms proportional to 1/n 2

(see, e.g., Johnson & Kotz, 1970, p. 244). Because estimates of incremental
validity are differences between multiple correlations, we are interested in
the bias of estimates of the differences. Given R1 computed with a predictors
and R2 computed with b predictors, and approximating the true squared
correlations P1 and P2 as P2 = (PI + P2)/2 for the purposes of computing a
qualitative estimate of bias,

BIAS(R2-R2)

n-i

If j2 = .4, values of b-a of 4, 5, and 9 imply bias in incremental validity
estimates of approximately .0048, .0060, and .0108, respectively, for a study
with n = 500, and bias of .0024, .0030, and .0054, respectively, for a study
with n = 1000. While these biases are not large in absolute terms, they may
not be negligible in terms of the incremental validities of interest. This is
particularly true for sample sizes of less than 1000.

If sample sizes of incremental validity studies are less than a few
thousand, then a correction for bias is desirable. The correction for
shrinkage given by Wherry (1931) or the more complex correction given by Olkin
and Pratt (1958) could be applied. Because there is very little difference
between the effects of these two corrections, the simpler correction by Wherry
may be preferable in practice. Olkin and Pratt note that, because their
correction is proportional to 1/n, it has no effect on the large sample
distribution of the multiple correlation. This is also true of Wherry's
correction. Consequently the large sample variances given here also apply to
estimates corrected for shrinkage by either of these two methods.

The Statistcal Properties of Incmental Validities

The incremental validity estimates d, d*, d, and a* are influenced by
sampling variation. Their exact sampling distributions are not known, but
large sample approximations have been derived which are quite accurate when
the sample sizes are several hundred or larger. It can be shown that in large
samples (when the predictor sets are disjoint or the samples are independent),
validity increments d, d*, a, and a* have normal distributions with means at
the true incremental validities (6, 6*, 6, and 6V, respectively) and variances
that can be calculated (estimated) from the matrices of correlations among
predictors and criterion. 1 The complexity of the expression for the variance
of the incremental validity depends upon whether the two multiple correlations
that are used to compute the index are based on different samples and thus can
be treated as independent.

1 This holds only if 6 > 0 or if the samples are independent or if the

predictor sets are disjoint. See Appendix B for an alternative approach when
the second predictor set includes the first.
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Indes d for R, and R. Computed from Independent Samples

Let ni be the size of the sample used to compute R1 and let n2 be the
size of the sample used to compute R2 . In large samples d has a mean of
approximately 6 and a variance of approximately

(1 - R•) 2 2( - 2

ao (d) +
n, n2

hIdes dfor R, and R. Computed from Independent Samples

Let nI and n2 be the sample sizes used to compute R1 and R2
respectively. Then in large samples, d* has a mean of approximately 6* and a
variance of approximately 411(l - R 2 2R2 2 2

;2(d) 1 + 4R2G - R2)

nI n2

Index d for k and R Computed from the Same Sample

Let n be the sample size. Because R1 and R2 are computed from the same
sample, they are stochastically dependent and hence

Var(d) = Var(R 2 - RI) = Var(R 2 ) + Var(Rl) - 2Cov(RI, R2 ).
Hence in large samples d, has a mean of approximately 6 and a variance of
approximately

(1 - R() 2  (1 - R•) 2  2Cov0 ,(RI, R2 ))= + _ , (8)
n n n

The computation of Cove(R 1 , R2 ) from the matrix of test and criterion
correlations is described starting on page 28 (Result 2).

Index d(for R. and R2 Computed from the Same Sample

Let n be the sample size. Because R1 and R2 are computed from the same
sample, they are stochastically dependent and hence

Var(d*) = Var(R2 - R2) = Var(R2) + Var(RI) - 2Cov(R , Ri).

Hence in large samples, d* has a mean of approximately 6* and a variance of
approximately

4R2( R2 R) 2  4R2(l - R2 )2  2Cov,(R2, R)
ow(d ) = + _ (9)

n n n
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The computation of 2) from the matrix of test and criterioncorrelations is described starting on page 27 (Result 2).

Ind a for R, and P2 Computed from Independent Sampls

Let n, be the size of the sample used to compute R ^and let n2 be the
size of the sample used to compute R2 . In large samples d has a mean of
approximately 8 and a variance of approximately

2 c(l - R1) 2  c2(l - RV
S( + - , (10)

nly n2y

where c, and c 2 are correction factors for restriction of range and y is the
reliability of the criterion.

Indem a for P, and R2 Computed from Independent Samples

Let n, and n 2 be the sample sizes used to compute R1 and R2,
respectively. Then in large samples d has a mean of approximately 6 and a
variance of approximately

44 2( - R2 2  4c R2  2-

-2ý 11 1 4c2 R1 (l - R2'

n1 y2  n2 y 2

where c, and c 2 are correction factors for restriction of range and y is the
reliability of the criterion.

Inde ad for R, and R2 Computed from the Same Sample

Let n be the sample size. Because R1 and R2 are computed from the same
sample, they are stochastically dependent and hence

Var(a) = Var(R$ - R1 ) = Var(R2 ) + Var(R1 ) - 2Cov(R', R2 )R
Hence in large samples, d has a mean of approximately & and a variance of
approximately

;2 cl(1 1R)2  c2(l - R2)2  2clc2COv0 2(Rl, R2)
_ _(d) = + 2_ ,

ny ny ny

where c1 and c 2 are correction factors for restriction of range and y is the
reliability of the criterion. The computation of Cov,(R1 , R2) from the matrix
of test and criterion correlations is described starting on page 28 (Result
2).

Index i for R, and R2 Computed from the Same Sample

Let n be the sample size. Because R1 and R2 are computed from the same
sample, they are stochastically dependent and hence
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Var a*) = Var( - A2) = Var(A2) + Var(A2) - 2Cov(A2, ,2

Hence in large samples, a* has a mean of approximately ^6 and a variance of
approximately

4 42(l - R2 2 4 2R(I - 2 COv(R2 , RE)

1 + 1 1) 4 cR(1, (13)
nly2  ny2  - ny 2

where cI and c 2 are correction factors for restriction of range and y is the
reliability of the criterion. The computation of Cov.(R2, R2) from the matrix
of test and criterion correlations is described starting on page 27 (Result
2).

Combining Estimates of Inowmta Validity

Statistical methods for pooling results of incremental validity studies
are quite similar regardless of the indexes used to represent incremental
validity. All are based on statistical theory for combining asymptotically
normal independent estimators (see Hedges, 1983). They are described
generically in this section so that they can be applied to either of the
indexes ( d or V*) previously discussed.

Suppose that there are k independent validity studies, each of which
yields an estimate T of incremental validity with a standard error S(T). Here
T may be either of the indexes d or d* described previously. Using a
subscript to denote the study from which an estimate is obtained, Ti is the
estimated incremental validity in the ith study and ei is the corresponding
incremental validity parameter. Thus the data from k studies is the set of
estimates Tl, ... , Tk and their standard errors S(T 1 ), ... , S(Tk).

If all of the studies provide estimates of a common incremental validity
parameter--that is, if 0l = "'" = ek = 0--then a weighted linear combination
of Tl, ... , Tk produces the most precise combined estimate (Hedges, 1983).
(See Appendix B for an alternative approach when the second predictor set
includes the first.) The optimal linear combination T. involves weighting
each Ti by the inverse of its variance S2(Ti), namely

Ek wi Ti
T. i=l , (14)Ek w i

i=l

where wi - l/S 2 (Ti). When each Ti is based on a large sample, then T. is
approximately normally distributed about 0 with standard error a(T.)
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T. - N(e, a 2 (T.)), (15)
where

o(T.) = [Ek wi)-1/ 2  (16)
i=l

Thus a test for the statistical significance of the incremental validity
uses the test statistic

Z = T. / a(T.). (17)

If 0 = 0, then Z has a standard normal distribution. If Z exceeds the 100a
percent critical value of the standard normal distribution, then the
incremental validity 0 is significantly greater than zero at significance
level a. For example, if Z > 1.64, the incremental validity is significant at
the a = .05 level of significance.

A 100(1-a) percent confidence interval for the incremental validity 0 is
given by

T. - za/2 a(T.) : 6 5 T. + Za/2 o(T.),

where za/2 is the 100a percent two-tailed critical value of the standard
normal distribution. For example, if a = .05, za/2 = 1.96 and a 95 percent
confidence interval of 0 is given by

T. - 1.96 a(T.) 5 0 s T. + 1.96 o(T.).

REsimati the Variance Acrss Studies of Inranental Validities

It is convenient to treat the incremental validity parameters as if they
were relatively constant across studies; i.e., to assume that 01 = ** = ek-
It may be useful to test this assumption by computing an estimate of the
variance (component) of the 0i's across studies. Formally we may assume that
e1, ... , 0 k are a sample from a universe of possible incremental validities.
This is consistent with the notion that the particular schools in which
validity studies are conducted are a sample from a universe of possible
schools, each with its own incremental validity parameter.

A simple estimate of ao, the variance of the universe of 0 values is

I= k (Ti - T)2 / (k-1) - Ek S2 (Ti)/k. (18)

i=1 i=l

Note that the first summation is just the usual sample estimate of the
variance of T1 , ... , Tk and the second term is the average of the variances
(squared standard errors) of the Ti. Note also that Equation 18 occasionally
yields negative values, which are truncated to zero.

A test of the statistical significance of aj (that is, a test of the
hypothesis H0 : aj = 0) uses the statistic
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H = £k (T - T.12

i=l S2(Ti)

If ai = 0, then H has approximately a chi-squared distribution with (k-1)
degrees of freedom. Thus if the computed value of H exceeds the 100(1-a)
percentage point of the chi-square distribution with k-i degrees of freedom,
aj is significantly greater than zero at significance level a.

It is usually simpler to compute H via the computational formula

[Ek wiTi] 2

H = £k wiTT - i=l , (19)
i=l kw

i=l

where wi = l/S 2 (Ti). This formula permits computation of H, as well as T. and
a(T.), from the sums of the variables wi, wiTi, and wiT?.

Power of Pooled Tests for naremental Vality

The large sample distribution given in Equation 15 can be used along
with Equation 17 for the test statistic Z and Equation 16 for c(T.) to obtain
the large sample distribution of the parametric test for pooled incremental
validity. This yields

Z - N(e/o(T.), 1).

Hence the power of the test for incremental validity at significance level a
based on the pooled estimate is the probability that a normal random variable
with mean 0/a(T.) and variance 1 exceeds za, the 100a percent one-tailed
critical value of the standard normal distribution. Thus the power is given
by

1 - O[za - e/o(T.)]. (20)

Power computations can be made from Equation 20 whenever the expected validity
increment 0 is known and the standard errors necessary to compute a(T.) have
already been calculated.

Power for R, and R2 Computed from the Same Sample

Let the population validities for the two test batteries be P1 and P2 ,
respectively. Let nl, ... , nk be the total sample sizes in the validity
studies. Then, under the assumption stated above, the population value of the
incremental validity in each study is 0 = P2 - P1 and the sampling variance of
the estimate Ti = R2 - R1 in the ith study is

S2(Ti) = A/ni
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where A = (1 - P2)2 + (I - P2) 2 - 2Cov(Rl, R2 ). The value of A is essentially
that given in Equation 8, but with known values of P1 and P2. Hence the
sampling variance 02(T.) of the pooled estimate of incremental validity is

a2(T.)
N

where N = Ek= ni is the total (pooled) sample size across all k studies.
This implies that the power of the test for pooled incremental validity is

S (P 2 - P1 )VN I
i - .0 za - I (21)

Note that this estimate of power depends only on the significance level,
two validities, A, and the total sample size across all k studies. It does
not depend directly on the number of predictor variables used to compute R1 or
R2 but is influenced by them through the covariance of R, and R2 used to
compute A. Equation 21 can be used to compute power values for a given level
of incremental validity whenever A can be computed. When the same sample is
used to compute R1 and R2 , the covariance of R, and R2 is not zero. In fact,
this covariance is usually quite large, particularly t., - the incremental
validity is small. The reason for this is that t1- magnitudes of R1 and R2
tend to be correlated: If there is little incremental validity, samples that
tend to give a large value of R, also give a large value of R2 .

However, the magnitude of the correlation betwe-n R, and R2 also depends
on the difference in the numbers of predictors in models 1 and 2.
Specifically, the correlation (and covariance) generally decrease as more
variables are included in model 2. For example, a typical value of the
correlation between R, and R2 for four added variables is .93 when P1 = .40
and P2 = .45, whereas a typical intercorrelation value for the same population
validities would be .91 when the second model includes nine additional
variables. Even these seemingly slight differences in correlation values
correspond to differences in the power of tests for incremental validity.

The estimate given in Equation 21 of the power of the pooled test for
incremental validity wan used to compute the power values given in Tables 2
through 4. These computations show that, when the incremental validity is .02
and the total sample size is at least N = 1500, the power of the test exceeds
95 percent when the a = .05 level of significance is used and 85 percent when
a = .01 for nine added variables. When only four variables are added, Table 4
shows that 95 percent power is achieved with less than 500 subjects when a =

.05, and with less than 750 subjects when a = .01.

Because current plans for validity studies include sample sizes
substantially lad7er than the minimum necessary for power of 95 percent for
tests at the a = .05 level of significance, current studies should have
adequate power to detect pooled incremental validities of .02 or even smaller.
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Table 2

Power of the Pooled Test for Incranental Validity
for Nine Additional Variables

as a Function of the Validity Inrement and Pooled Sample Size
for R, and R. Computed from the Same Sample

and P, = .40

Significance Level a = .05 Significance Level a = .01

P2 -P l  P2 -P 1

n .05 .02 .05 .02

250 0.72 0.40 0.45 0.17
500 0.93 0.62 0.79 0.36
750 0.99 0.77 0.93 0.53

1000 1.00 0.87 0.98 0.67
1250 1.00 0.93 1.00 0.78
1500 1.00 0.96 1.00 0.86
1750 1.00 0.98 1.00 0.91
2000 1.00 0.99 1.00 0.94
2200 1.00 0.99 1.00 0.96
2400 1.00 1.00 1.00 0.98
2500 1.00 1.00 1.00 0.98
3000 1.00 1.00 1.00 0.99
3500 1.00 1.00 1.00 1.00
4000 1.00 1.00 1.00 1.00
5000 1.00 1.00 1.00 1.00
6000 1.00 1.00 1.00 1.00
7000 1.00 1.00 1.00 1.00
8000 1.00 1.00 1.00 1.00
9000 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 1.00

Note: Power values listed as 1.00 are values greater than .995.
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Table 3

Powa" of the Pooled Test for Inremental Validity
for Five Additional Variables

as a Function of the Validity Increment and Pooled Sample Size
for R, and R2 Computed from the Same Sample

and 1P = .40

Significance Level a = .05 Significance Level a = .01

P2 - P1 P2 -P1

n .05 .02 .05 .02

250 0.79 0.46 0.55 0.21
500 0.97 0.70 0.87 0.44
750 1.00 0.84 0.97 0.63

1000 1.00 0.92 1.00 0.77
1250 1.00 0.96 1.00 0.86
1500 1.00 0.98 1.00 0.92
1750 1.00 0.99 1.00 0.96
2000 1.00 1.00 1.00 0.98
2200 1.00 1.00 1.00 0.99
2400 1.00 1.00 1.00 0.99
2500 1.00 1.00 1.00 0.99
3000 1.00 1.00 1.00 1.00
3500 1.00 1.00 1.00 1.00
4000 1.00 1.00 1.00 1.00
5000 1.00 1.00 1.00 1.00

.6000 1.00 1.00 1.00 1.00
7000 1.00 1.00 1.00 1.00
8000 1.00 1.00 1.00 1.00
9000 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 1.00

Note: Power values listed as 1.00 are values greater than .995.
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Table 4

Powe of the Pooled Test for Incmta Validity
for Four Additional Variables

as a Function of the Validity Increment and Pooled Sample Sin
for R, and R. Computed from the Same Sample

and P, = .40

Significance Level a = .05 Significance Level a - .01

P2- Pl P 2 -Pl

n .05 .02 .05 .02

250 0.82 0.48 0.59 0.23
500 0.97 0.73 0.90 0.47
750 1.00 0.87 0.98 0.66

1000 1.00 0.94 1.00 0.80
1250 1.00 0.97 1.00 0.89
1500 1.00 0.99 1.00 0.94
1750 1.00 0.99 1.00 0.97
2000 1.00 1.00 1.00 0.98
2200 1.00 1.00 1.00 0.99
2400 1.00 1.00 1.00 1.00
2500 1.00 1.00 1.00 1.00
3000 1.00 1.00 1.00 1.00
3500 1.00 1.00 1.00 1.00
4000 1.00 1.00 1.00 1.00
5000 1.00 1.00 1.00 1.00
6000 1.00 1.00 1.00 1.00
7000 1.00 1.00 1.00 1.00
8000 1.00 1.00 1.00 1.00
9000 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 1.00

Note: Power values listed as 1.00 are values greater than .995.
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Power for R, and R2 Computed from Independent Sample

Let the population validities for the two test batteries be P1 and P2 '
respectively. Let n1 , ... , nk be the total sample sizes in the validity studies
and assume that the two groups within each study are of equal size. The
population value of the incremental validity is 0 = P2 - P1 and the sampling
variance of the estimate Ti = R2 - R1 in the ith study is

S2 (Ti) = 24/ni

where A = (1 - p1)2 + (1 - P•) 2 . Note that the covariance term is omitted
because R, and R2 are independent. Therefore the numbers of predictors in the
two models also do not affect the power of the test for incremental validity when
independent samples are used. Thus the sampling variance o2 (T.) of the pooled
estimate of incremental validity is

o2(T.) = 2A
N

where N = ni is the total (pooled) sample size across all k studies. This
implies that the power of the test for pooled incremental validity is

1 - E[za - _(P2 -lzN I (22)

The estimate given in Equation 22 was used to compute the power values
given in Table 5. These computations show that the power of the pooled test for
incremental validity is substantially less when the studies use independent
samples to compute R1 and R2 than when the same sample is used. For example, if
the incremental validity is .02 and the a = .05 level of significance is used,
a total sample size of N = 45,000 is needed to reach a power of 80 percent. If
the incremental validity is .01, the power does not attain even 40 percent power
for pooled sample sizes as large as N = 50,000.
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Table 5

Power of the Pooled Test for Incmnmtal Validity
aw a Funtion of the Validity Incremnt and Pooled Sample Size

for R• and R2 Computed from Independent SampIs
and P, = .40

Significance Level a = .05 Significance Level a = .01

P2 -Pl P2 -P 1

n .05 .02 .05 .02

1,000 .25 .10 .09 .03
2,000 .39 .13 .17 .04
3,000 .51 .16 .26 .05
4,000 .61 .19 .34 .06
5,000 .70 .21 .43 .07
6,000 .76 .24 .51 .08
7,000 .82 .26 .59 .09
8,000 .86 .28 .66 .10
9,000 .89 .31 .71 .12

10,000 .92 .33 .76 .13
15,000 .98 .43 .92 .20
20,000 1.00 .52 .98 .26
25,000 1.00 .60 .99 .33
30,000 1.00 .67 1.00 .40
35,000 1.00 .73 1.00 .47
40,000 1.00 .78 1.00 .53
45,000 1.00 .82 1.00 .59
50,000 1.00 .85 1.00 .64

Note: Power values listed as 1.00 are values greater than .995.
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THEORErICAL RESUTS

In this section we derive the asymptotic distributions of the incremental
validity indexes d and d*. We use these asymptotic distributions to obtain
large sample approximations to the distributions of these indices. We begin by
stating a fundamental theorem. Then we use this theorem to obtain the asymptotic
joint distribution of the determinants of certain correlation matrices. These
distributions are then used to obtain the asymptotic joint distributions of R,
and R2 , and R2 and R2 which yield the asymptotic distributions of d and d*.

A Fundammial Theoran

Throughout this section we make use of the multivariate delta method,
which follows from the fundamental theorem given below. This theorem is a
straightforward generalization of Theorem 4.2.5 in Anderson (1958), as given, for
example, in Olkin and Siotani (1976).

Theorem: Let u(n) = (ul(n), ... , um(n)) be a vector of random variables
such that the limit in probability as n - - of u(n) = b = (bl, ... , bm) and Vn
(u(n) - b) is asymptotically normally distributed with mean vector 0 and
covariance matrix Y. If y(n) = (y 1 (n), ... , Yk(n)) = (f 1 , "''' fk), k S m, where
the fi = fi(u(n)) are functions of u(n) having first and second derivatives in
a neighborhood of u(n) = b, then the asymptotic distribution in [y(n) - f(b)] is
given by

in (y(n) - f(b)] - N(O, ATA'),
where A is a k x m matrix with elements

aij = (afi(u)/ auj(n)) I u = b and f(b) = (fl(b), ... , fk(b)).

In this paper, the vector u(n) is composed of correlation coefficients
(i.e., u is the correlation matrix among tests and criteria, arranged as a
vector). Because correlation coefficients of multivariate normal variates are
functions of sample moments, they have an asymptotic joint distribution that is
multivariate normal with a covariance matrix T which is a function of the
population values of the correlations (Pearson & Filon, 1898). Thus the theorem
gives a method for computing the asymptotic joint distribution of pairs of
multiple correlations, or of any smooth functions of pairs of multiple
correlations, such as the indexes of incremental validity considered here.

The Samplin Disbibution of InaMnmta Validtie

In this section we apply the fundamental theorem to obtain the sampling
distribution of incremental validity indices in large samples. We do so in three
steps. First, we obtain the asymptotic joint distribution of the determinants
of correlation matrices. We use the joint distribution of the determinants to
obtain the asymptotic joint distribution of two multiple correlations and that
of two squared multiple correlations. Finally, we use the joint distribution of
two multiple correlations to obtain the asymptotic distribution of the
incremental validity indices.
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Notation

Let X0 , X1 , X2 , ... , Xm be a collection of random variables with a joint
multivariate normal distribution, where X0 represents the criterion variable and
X1 , ... , X. represent predictor variables. We denote the sample and population
correlations between Xi and Xj by ri. and Pij respectively. We denote a matrix
of correlations by defining the set o0 variables to be correlated. Specifically,
for k a 1, let a1 , ... , ak denote distinct subsets of the set of integers {0, 1,
... , m}. Then each ai defines a set of variables--the set of variables whose
subscripts are contained in ai. We use the notation R(al), ... , R(ak) to denote
the square matrices of correlations of variables implied by the sets a1, ... , ak-
We will also use the notation R(O, ai) to denote the matrix of correlations of
X0 and the variables implied by ai instead of the more formal R({O}, ai).

Rsut 1: Joint Distribution of Determinants of Correlation Sub-malrias

Let X0 , XI, ... , Xm be random variables (representing a criterion and test
scales) that have a joint multivariate normal distribution. Let a,, ... , ak be
nonempty sets of the integers between 0 and m inclusive, denoting collections of
the m subtests, possibly including the criterion. Thus
R(al)..., R(ak) are the sample correlation matrices of the variables implied
by a,, ak respectively. Then the asymptotic joint distribution of IR(al) I,
... u IR(ak) , when all of the determinants are computed from correlations based
on the same sample of size n" is given by

ýfl r(IR(al), ..., IR(ak)I) - (IP(al)I, -.- , IP k)l)] - N(O, E)
where 0 is a k x 1 vector of zeros and E is given by (oij ) and

°ij i £ £ £ 41P(ai)IIP(aj)IP(i) pcJ)scai tcai ucaj veaj
s<t u<v

Pst Puv (P a u + + + ptv)/2 + Psu ptv + psv ptu

- (Pat Psu Psv + Pst Ptu Ptv + Psu Ptu Puv + Psv Ptv Puv )

where the sums in a., are taken so that s < t and u < v and p(i)st is the element
in row s and column t of P-'(ai), the inverse of P(ai), and Pa5 - 1.

A somewhat simpler form of the asymptotic variance (aii) of the determinant
of a correlation matrix was derived by Olkin and Siotani (1976). We use a
slightly more complex expression than needed for the variance terms to define all
elements of E because it generalizes more easily to the situation in which some
correlations are known. The covariance terms are obtained by applying the
multivariate delta method to the joint distribution of the correlation matrix.
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Apply the method by writing the nonredundant elements of the correlation matrix
as a vector r = (r 0 1 , r 0 2 , ... , rom , r 1 2 , ... rlm 1

r 2 3 , ... , r(m.l)m )'. Then if IR(ai)I = fi(r), the asymptotic covariance
matrix is computed from the partial derivatives of the fi with respect to the
elements of r. Since R(ai) is symmetric,

_L-RLil-- = 2 r(iM StfR(ai)l.
arat

Hence

oij - 4 £ iP(ai)IIP(aj)I p(j)st p(j)uv Cov(rst , ruv), (23)
s<t, u<v

where Cov(rst, ruv ) is the covariance of rat and ruv from the asymptotic matrix
of r, and s,t e ai and u,v e aj. Substituting the expression given, for example,
by Pearson and Filon (1898) for cov(rst , ruv ) yields the result given in the
theorem.

Equation 23 also can be written as
= ~st uvCort

=ij = E E E IP(ai) IP(aj)l P(i) P(j) Cov(rat i ruv
5 t u v

where no index is restricted to be less than another.

Using the notation Pij,k = Pij - Pik Pjk I

Cov(rst, r ) - ½{ Psu,tPtv,u + PsvuPtus + Psu,vPtvs + Psv,tPtu,v }"

By symmetry,

oij - 2£ £ £ £ IP(ai)IIP(aj)I P(i)st P(j) Psut Ptvu (24)
5 t u v

When Some Correlations Known. When some of the elements of the R(ai) are
known, the formal computation of the asymptotic distribution remains the same as
given above except that each term of the sum involving a known ret vanishes.

When All Correlations Estimated. If all of the correlations are estimated,
ai. can be expressed in the form of simple matrix multiplications, as shown by
expanding Equation 24 and carrying out the indicated multiplications by the
inverse elements, as follows:

Oij - 21P(ai)IIP(aj)I £ £ [( £ P(i)at Peu) - Ptu](( £ P(J) Ptv) - Ptu]-
t u s v

Let Pij - the correlation matrix between the variables in set ai and set aj, with

Pij - P(ai). Let A - (P-1i - I)Pij and B = Pij(P- j - I) . Then
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aij = 2IP(ai)IIP(aj)Itr(AE') = 2IP(ai)IPcaj)jA9BI (25)

where the dot product operator 9 denotes the sum of the products of the
corresponding elements in the two matrices.

Realt 2: Population Covarianc= of Multiple Correlations Estimatel from the SameSample

Let X0 , Xl, ... , Xm be random variables with a joint multivariate normal
distribution. Let R, be the sample multiple correlation of a subset of variables
identified by the set a, of indexes with X0 and let R2 be the sample multiple
correlation of another subset of variables identified by the set a 2 of indexes
with X0 , where both correlations are computed from the same sample of size n.
Let P1 and P2 be the population multiple correlations correspondins to R, and R2
respectively. Then the asymptotic joint distribution of Rf and R2 is given by

~n [(i, 2) - (Pl 2~)] - N(O, Z),
where E =(aij )

°11= cl + c2 1PO, all.?.- 2c3 1P(O.IalJJ.._

jP(al)1 2  IP(al)1 4  IP(al)13

022 C4  + c51ssP(O, a2_[?-- 2261P(O. a2L_ •
IP(a 2 )12  IP(a2 )14  IP(a 2 )I

012= C

IP(a,)IIP(a 2)I

C = Ic7 - -- 8 IP(O, aliL -_--SP(O. a2 .IJ-

IP(al)l IP(a2)I

+ c IP(O, alljIIP(O a24.. I

IP(a,)lHP(a 2 )l
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c1 - Var (jR(O, al)j), c6 = Cov(IR(a2)I, IRCO, ct2)),

c2 - Var (IR(a•l), C7 = Coy (IR(O, ai)I, IR(o, 02)I),

c 3 - Cov(lR(al)l, IR(O, al)I), c8 = Coy (IR(al), IR(O, a2)•I•,

C 4 = Var (IR(O, a2 )1), C9 = Cov (jR(O, cl)j, 1R(a2)1)o

C5 = Var (IR(a 2)I), c 0 = Cov (IR(al)I, IR(a2)i),

and the covariances c1, ... , c 1 0 are given in Result 1.

The asymptotic joint distribution of R1 and R2 is given by
In [(RI, R 2 ) - (Pl, P 2 )] - N(O, Y),

where T = ),

vl= C1  + _21P(O, a1LV3 --c 3 P(O. .lI-
41P(al)12 p2 1 ( l) 4 P 2JP(al)13 p2

F22 = G3 + -41P(o. a2-1- -__. 6 P(o. a211-
41P(a 2 )12 P• 41P(a 2 )14 P• 21"(c 2)13 P•

7 1 2 = C

4jP(al)jIP(=2 )JlPP 2

and cl, ... , c 6 and C are given above.

The result is proven by writing the multiple correlations as functions of
the determinants of correlation matrices

R2 = 1 - IR(0. a

JR(a2)[
R3 - - R.a

Since R, and R2 are functions of IR(a1•), JR(o, a1), IR(R2)1, and IR(o, a2 j•,
the joint distributions of (R1 , R2 ) and (R2, R3) are derived by applying the
delta method ucing Result 1.
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Note that Tij = oi /4PiPj , and hence the correlation

p(R1 , R2 ) = p(R2, R•)

We use a more complex expression for the asymptotic variances .il and Tii
than is strictly necessary because the expression given above generalizes more
easily to the case when some of the bivariate correlations are known. If none
of the correlations are known then

ii = 4P( - p )2 and Tii = (1 - p?}2.

Result 3: Population Variances of Multiple Correlation Differweces Estmated frmn the Same Smnple

Let X0 , X1 , ... , Xm be random variables with a joint multivariate normal
distribution. Let a, be a nonempty subset of the set of integers {1, 2, ... , m}
defining (via the subscripts) a subset of the collection of variables. Let a 2
be a distinct nonempty subset of {l, 2, ... , m} defining another subset of the
variables Xl, ... , Xm. Let R1 be the sample multiple correlation of XO with the
variables defined by a, and let R2 be the sample multiple correlation of X0 with
the variables defined by a2. Let P1 and P2 be the population correlations
corresponding to R1 and R2 . Then the asymptotic distribution of d = R2 - R1 is
given by bn (d - 6) - N(O, d)2

where 6 = P 2 - P1,
d= Tl + T22 - 2T12

and the T. are given in Result 2. The asymptotic distribution of d* = R2 - R2

is given by
Vn (d* - 6* ) - N(O, ad*),

where 6* = P2 - P2
2 1 2 = Oll + 022 - 2012 (26)

and the oij are given in Result 2.

This result is obtained directly by applying the delta method using the
asymptotic distribution given in Result 2.

Result 4: Population Variances of Multiple Correlation Differences Estimated from Independent
Samples

Let X0 , Xl, ... , Xm be random variables with a joint multivariate normal

distribution and let a1 and a2 be distinct subsets of the integers {1, ... , m}
such that each defines a distinct set of the variables X1 , ... , Xm. Let R1 be
the multiple correlation of X0 with the variables defined in a, computed from a
sample of size n, and let R2 be the multiple correlation of X0 with the variables
defined by a 2 computed from an independent sample of size n2 . Let P1 and P2 be
the population multiple correlations corresponding to R, and R2 . Then if n - n,
+ n 2 and i = nl/n and 72 = n 2 /n remain fixed as n - •, the asymptotic
distributions of d = R2 - R, and d* =R -R2 2

R2 - 1 are given by

V'n (d - 6) - N(O, oA)
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and
'n (d* - 6*) - N(O, ad*)

where 6 P P2 - PI, 6* P - P, and

P2  1~ n

(1 - P•) 2  ( - 2

O .= ________+

02 1 1) 4P2(l 2

d* +

This result follows directly from the asymptotic distributions of
i'ni(Ri - Pi) and /ni(R? - P?) and the statistical independence of R1 and R2 .

Using the Theoretical Result with Estimated Variances

Results 3 and 4 give the asymptotic distributions of incremental validities
in which the asymptotic variance is a function of the matrix of population
correlations among variables. Thus this distribution theory is of little use
when (as in any real application) the entire matrix of population correlations
is not known. To use these results, it is necessary to show that estimating the
asymptotic variances from sample correlations still yields a valid asymptotic
distribution.

Result 5: Sample Variances of Multiple Correlation Differnces Estimated from the Same Sample
Suppose that the conditions stated in Result 3 obtain. Define ^2 and ^2

as uppostiaes ofo ada and Od*
as the estimates of od and od* that would be computed by using the corresponding
sample correlation coefficients in place of the population correlations. Hence
od and ad* are random variables depending on the sample correlations. Then the

following asymptotic distributions hold as n - - :

Vii (d - 6) ; 0 d - N(0, 1),
and

Vn (d* - 6*) / ;d* - N(O,1).

These asymptotic distributions imply that, in large samples,

d - N(6, ;2/ n)
and

d* - N(6", ;I n).
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Result 6: Sample Variances of Multiple Correlation Differmces Estimated from Indepmdmt Sampes

Suppose that the conditions of Result 4 obtain. Define ;2 and ;d* as the
estimates of a2 and 2

ed od* obtained by substituting the stochastically independent
sample multiple correlations R1 and R2 for the population multiple correlations
P1 and P2 respectively. Then the following asymptotic distributions hold as
n

V'f (d - 6) / ad - N(O, 1)
and

Vn (d* - 6*) / d*- N(O, 1).

These asymptotic distributions imply that, in large samples,

d - N(6, ;2 / n)
and

d* - N(6*, o2* n).

Results 5 and 6 follow from Results 3 and 4 by noting that the sample
correlation matrix R converges in probability to the population correlation
matrix P and ad and Gd* are all continuous functions of the elements of P (see,
e.g., Rao, 1973, p. 385, Theorem 6a.2(i) ).

Results When Some Correlations Are Known

In some situations, some of the correlations will be known with a very high
degree of precision. For example, if a test battery has been widely used for
some extended period, the correlations among tests in the battery may be
essentially known. That is, for some rij, we may know the value of the
corresponding population correlation In such cases, it is desirable to
increase the precision of estimates of incremental validity by utilizing the fact
that some of the correlations are known.

We compute estimates of multiple correlations and incremental validity when
some correlations are known by substituting the values of the known correlations
for their sample estimates. This procedure yields consistent estimates of the
multiple correlations under the model with some known correlations, but the
estimates so derived are not the maximum likelihood estimates (see Olkin &
Sylvan, 1977). One explanation is that the maximum likelihood estimates (MLEs)
of joint covariance matrices are rather complex when some correlations are known,
which in turn yield rather complicated (or intractable) expressions for the MLEs
of the multiple correlations. The strategy suggested here has the advantages
that it produces consistent estimates with reduced variance when some
correlations are known (compared to the situation when all correlations must be
estimated), it is quite flexible as to patterns of known correlations that can
be handled, and it can be further generalized to cases where data from an
independent sample are pooled together to strengthen estimates.

Results 1, 2, 3, and 4 generalize directly to the case where the
correlations are known. In the case where all correlations were estimated, we
derived the asymptotic distributions of functions (e.g., determinants and
multiple correlations) from those estimated correlations. When some correlations
are known we consider functions of both the estimated correlations and the known
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correlations. The key to the generalization of results is the recognition that,
since a known correlation pij is a fixed constant, its variance and covariance
with any other quantity must be zero. Also any function of all fixed arguments
must also be a fixed constant. Using this idea, the generalization of Result 1
is given below as Result 7.

Result 7: Genliution of Result 1 where Some Corelatiomn Known

Let X0 , XI, ... , XM be random variables (representing criterion and test
scales) that have a joint multivariate normal distribution. Let a,, ... , ak be
nonempty sets of 0 through m inclusive, denoting collections of the m subtests.
Let R(aI), . .. , R(ak) be the correlation matrices of the variables implied by a 1,
".. Iak respectively, where at least one of the elements of each R(ai) is a
sample correlation and the others are population correlations. For each i=1,
... , k define a status-indicator matrix K(ai) with the same dimensions as R(ai),
but where the elements k(i) st of K(ai) are defined as 0 or 1 depending upon
whether the corresponding element r(i)st of R(ai) is known. Specifically,

f 0 if r(i)st = P(i)st is known
k(i)st = f

t1 if r(i)st is estimated.

for s, teai. Then the asymptotic joint distribution of IR(al)J, ... , JR(ak)j
when all of the determinants are computed from correlations based on the same
sample of size n is given by

J [(IR(aI)J, ... , IR(ak)) - (IP(al)I, ... IP(ak)l)] - N(O, Z)

where Z is given by (aij) and

Oij = E £ E E 4IP(ai)IIP(aj)Ik(i)st k(j)uv P(i)st p(j) uvx
sEai teai uEaj veCaj

s<t u<v

Pst Puv Psu v + Pu + Ptv)/2 + psu ptv + psv ptu

-(Pst Psu Psv + Pst Ptu Ptv + Psu Ptu Puv + Psv Ptv Puv

where the sums in aij are taken so that s < t and u < v, and p(i)st is the
element in row s and column t of P-1 (ai), the inverse of P(ai), and ps, = 1.

Result 8: Genralzation of Result 2 where Some Correlhou mKnows

Let X0 , Xl, ... , Xm be random variables with a joint nonsingular
multivariate normal distribution. Let R1 be the sample estimate of the multiple
correlation with X0 of a subset of variables identified by the set of indices a 1
and let R2 be the sample estimate of the multiple correlation with X0 of a subset
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of variables identified by the set of indices a 2 . Some (but not all) of the
bivariate correlations may be known. Thus the corresponding population
correlations may be substituted for the corresponding sample correlations in the
computation of R, and R2 . Whenever sample correlations are used to compute R1
or R2 , they are based on the same sample of size n. Let the status indicator
functions L(ai) and L(O, ai) be defined so that

0 if all elements of R(ai) are known
L(ai) = i

1 if at least one element of R(ai) is estimated
and

0 if all elements of R(O, ai) are known
L(O, ai) =

1 if at least one element of R(O, ai) is estimated.

Then the asymptotic joint distribution of R2 and Ris given by

1/((~ 2) - (Pl, P2)] - N(O, E)
where E = (oij ) and

all = -il L(O, a2 l. + 22 La 1 LLO,.0.9LL-- - 223 L(a-)LMO, axiIP(O. a1 L--,

pI(01)12  IP(a)1 4  IP(a1)13

022 = c3 L(O, a 2.). + c4 La 2 )!P(O. a2j_.L- _2.c6 L(a 2 )L(O. a21JP(O. a 2.LL_,
IP(a2)12 IPla2) 14 IP(a 2 )13

a12 C

JP(a.)llP(a 2 )l

C = I c 7 L(O, al) L(C, a,) + CS L(a.I LeO, a2 )IP(O. a.ll_

IP(al) I

+ C9 LO, a,) L(a 2 ) P(O, a2.)1.1 + clO L(.al L(a2 11'P(O, al)IIP(O, a 2.L1 I1

IP(a2)l JIP(a ) IIP(* 2 )1 J
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cI = Var(CR(O, al)J), C6 = Cov(IR(a 2 )I, IR(O, a 2 )1),

C2 = Var(IR(al)I), c 7 = Cov(OR(O, aI)J, IR(O, a 2 )1),

c3 - Cov(IR(a•)J, IR(O, afl)1, C8 = Cov(IR(alil, IR(O, a2)i),

c4 = Var((R(O, a2)1), c9 = Cov(IR(O, al), IR(a2)••,

c5 = Var(IR(a2)1, C1 o = Cov(lR(al)l, IR(a2)•I•

and the covariances c 1 , ... , c10 are given in Result 7. The asymptotic
distribution of R1 and R2 is given by

V/n((Rl, R2 ) - (P 1 ' P 2 )] - N(O, T),
where T = (Tij),

Til= --21 L(o, al)- + --22 LWal•) (0Po. 011L- - 93 L(a-)LIO, al) IPOe. a,1I- ,
4I~ a )I 1P 41P(al)14 p2 21P •al)13 p2

V22 = a3 LIO, a2j- + -4 L(a2 ) 1P(o. a2 -2- . --26 L(a2 )L(•. a2) le(O. a 2 11,

41P 12 P2 41P6 2 14 P JP(a 2 )13  2

712 C

4JP(cxi) I P(a2) tP1P2
and c 1 , ... , c 6 and C are given above.

Results 3, 4, 5, and 6 are correct as stated for the case of some known

correlations, provided that the covariance matrix for the joint distribution of

(R 1 , R 2 ) derived via Results 7 and 8 is used in place of that given in Results
1 and 2.

Note

Although Results 7 and 8 provide a method to increase precision of

estimates by using known values of intercorrelations among predictor variables,
extensive computations have shown that it produces only a small increase. The
use of the method given in these results is computationally rather involved and
could thus be justified only if sample sizes were quite marginal. If the overall
power of tests for pooled incremental validity is adequate, the additional
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precision afforded by the use of these methods does not justify the added
computational complexity.

SUMMARY OF PROCEDURES FOR SYNTHESEZING
INCREMiENTAL VALIDITY RESULTS

This section is a practical guide to procedures for synthesizing the
results of incremental validity studies. It provides a step-by-step listing of
procedures to be followed for both estimation of incremental validity across
studies and testing of the combined significance of the results. An example
based on hypothetical results from four schools demonstrates the application of
the procedures 2 .

Step I: Condu& the Incmtal Vadlity Study at Each Site

At each site (school) the incremental validity study compares a sample
validity R1 with another sample validity R2 to determine whether R2 is larger
than Rl. Formally this involves a test of the hypothesis that the population
validity P2 associated with R2 exceeds the population validity P1 associated with
Rl; that is, a test of the hypothesis

H0 : P 2 = P1.

or the identical test that P2 = P2. The details of the hypothesis test depend
on whether dependent or independent samples are used to compute R1 and R2 , as
discussed above.

R1 and R2 Computed from the Same Sample

Case 1. If R, and R2 are computed from the same sample and the predictors
for R, are a subset of the predictors for R2 , then the appropriate test for
incremental validity is the usual F-test for change in multiple correlation. Let
a be the number of tests used as predictors in R1 and let b > a be the number of
tests used as predictors in R2 , and let n be the sample size. Compute the F-test
given in Equation 1 and compare it to the critical value for an F-distribution
with (k - A) and (n - b - 1) degrees of freedom. Reject the hypothesis of no
incremental validity if the computed value of F exceeds the critical value.

Case 2. If R1 and R2 are computed from the same sample but one set of
predictors is not a subset of the other, the usual F-test for change in multiple

correlation cannot be used. Compute the test statistic X2 given in Equation 2.
Reject the hypothesis of no incremental validity at significance level a if the

2 The methods described in Steps IV through VII are less accurate than
the methods of Appendix B when the second predictor set includes the first, as
it does in the examples. The methods described in these sections are valid if
the predictor sets are disjoint or if the samples are independent.
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computed value of X2 exceeds the 100(1-a) percentile point of the chi-squared
distribution with one degree of freedom.

R, and R Compued from Independent Samples

If R1 and R2 are computed from independent samples the usual F-test for
change in multiple correlation cannot be used. Compute the test statistic X2

given in Equation 3. Reject the hypothesis of no incremental validity at
significance level a if the computed value of X2 exceeds the 100(1-a) percentile
point of the chi-squared distribution with one degree of freedom.

Example

Table 6 shows a small data set representing the results of validity studies
on four independent samples or schools. Separate regressions (using batteries
1 and 2) have been conducted for each school to obtain the values of R1 and R2
for each single sample of subjects. Table 6 shows the differences in squared
correlations that lead to the individual significance (F) tests. For this
example we have used a = 10 and b = 20 for all four schools or studies. (Either
a or b or both could vary across studies, however.)

Each school's F-test is presented in Table 7, with upper-tail p values (in
the second column) indicating that significant increases in validity are found
for two of the four schools. The probabilities ranged from .004 to .539. Two
of the results are "significant" by traditional standards (i.e., a < .05).

Table 6
Example: Data

School n R1  (a) R2  (b) R2 - R2

Air Traffic Controller 470 .400 (10) .420 (20) .016
Fire Control Technician 530 .380 (10) .424 (20) .036
Gunner's Mate 700 .440 (10) .473 (20) .030
Electrician's Mate 460 .250 (10) .290 (20) .022

Step U: Compute Tests of Combined Significance of Incremental Validity

The validity study conducted at each site will have provided a significance
test as described in Step I. From each study's significance test, an upper-
tailed probability is obtained. These values p1 through Pk should then be used
to compute either Stouffer's (Stouffer et al., 1949) or Fisher's (1932) combined
significance test, depending on the expected outcomes of interest.

Stouffer's test, given in Equation 4, may be somewhat more likely to detect
the outcome in which all sites show roughly equal-sized increments to validity.
Fisher's test (Equation 5) should be used if the question of added validity for
any population is of interest. The hypothesis of no increment to validity in any
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population is rejected at level a if the selected test exceeds the 100(1-a)
percent critical value in the appropriate reference distribution.

Example

Table 7 shows the values of the transformed p's used in the two combined
significance tests. The values for the normal deviates (z(pi)) and the log-
transformed p's were obtained using the mathematical and probability functions
of the Minitab mainframe-computer package (Ryan et al., 1985).

Table 7
Example: Computation of Signifrcane Tert

School F (df) Pi z(pi) log(pi)

Air Traffic Controller 0.894 (10, 449) .539 -0.097 -0.62
Fire Control Technician 2.220 (10, 509) .016 2.155 -4.16
Gunner's Mate 2.600 (10, 679) .004 2.636 -5.47
Electrician's Mate 1.059 (10, 439) .393 0.272 -0.93

Totals 4.965 -11.19

The Stouffer value, which equals 2.48, is significant compared to the
standard normal distribution (p = .007). The Fisher value of 22.37 is compared
to the chi-square distribution with 2k = 8 degrees of freedom. The observed
level of significance for the Fisher test was .0043, only slightly smaller than
the probability for the Stouffer test. Both are significant at even the
relatively stringent a = .01 significance level.

Both tests indicate that the null model, of no increment to validity in any
population Studied, should be rejected. The additional test battery does add to
validity in at least one of the populations studied. The combined
significance methods cannot identify whi population or populations show this
added validity, however.

Step mI: Obtain Information for Artifact Correction in Each Study

In order to correct the incremental validity in a study for the artifacts
of unreliability and restriction of range, two pieces of information are needed.
One is the criterion reliability. The other is the ratio u of the standard
deviation of the test score in the unrestricted population to the standard
deviation in the study. The unrestricted population must, of course, be defined
in the same way for all studies. A good choice for the unrestricted population
would be the general applicant pool that takes the ASVAB. No example of artifact
correction is provided here.

Step IV: Compute the Index of Incrnental Validity and its Variance for Each Study

In order to combine the incremental validities across studies, it is
necessary to compute the index of incremental validity and its sampling variance
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in each study. The entire process should be done once for the index a of change
in multiple correlations and once for the index d* of change in squared multiple
correlations. First compute the indexes of artifact-corrected incremental
validity

d = R2-

and

using the formulas given in Equations 6 and 7. The sampling variances of these
indexes depend on whether R, and R2 are computed from the same sample or from
independent samples.

If R, and R2 are computed from the same sample in a particular site, use
the formulas given in Equations 12 and 13 to compute the sampling variances of
a and V*. If R, and R2 are computed from independent samples, use the formulas
given in Equations 10 and 11 to compute the sample variance of d and V*.

If artifact corrections are not used, then cl, c 2 , and y are all assigned
a value of 1 in Equations 10, 11, 12, or 13 when computing the sampling variance
incremental validity.

Examnple

Table 8 shows the multiple correlations R1 and R2 , the covariances between
R, and R2 , and the estimates of d and their variances for the four hypothetical
schools. Analogous values for d* (the difference in squared correlations), and
covariances between R and R2 are shown in Table 9. Because the data are from
one sample within each school and artifact corrections were not applied,
Equations 12 and 13 were used to compute the variances with the values of cl, c 2 ,
and y set to 1.0.

Table 8
Example: Estimates and Variances of Differeuces in Corrdations

School R, R2 d = R2 - R1  Cov(R 1 , R2 ) a 2 (d) ;(d)

Air Traffic Controller 0.400 0.420 0.020 0.66 0.0001 0.0117
Fire Control Technician 0.380 0.424 0.044 0.63 0.0003 0.0166
Gunner's Mate 0.440 0.473 0.033 0.56 0.0002 0.0137
Electrician's Mate 0.250 0.290 0.040 0.76 0.0004 0.0208

Table 9

Eumple Estimates and Variances of Differems in Squared Correlalimn

School R2 R2 d* = R2-R2 Cov(R2, R2} ; 2 (d*) o(d*)

Air Traffic Controller 0.160 0.176 0.016 0.445 0.0001 0.0092
Fire Control Technician 0.144 0.180 0.036 0.417 0.0001 0.0116
Gunner's Mate 0.194 0.224 0.030 0.464 0.0002 0.0128
Electrician's Mate 0.062 0.084 0.022 0.220 0.0001 0.0115
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It is also possible to compute confidence intervals using the d and d*
estimates from the foir studies. Table 10 shows 95 percent confidence intervals
for the population (. erences in correlations (P 2 - Pl) and for the squared
differences (P1 - P•) for the four schools in the example. These confidence
intervals also provide an alternative method of testing the null hypothesis of
no incremental validity in each study. However, for smaller samples, the usual
F-test will be more accurate since the confidence intervals are based on
asymptotic (large-sample) results.

Note that negative values of P2 - P1 are impossible when battery 2 includes
battery 1 (and they may be highly implausible in other circumstances). If
negative lower confidence limits are computed in such circumstances, they should
be truncated to zero.

Table 10
Example: Ninety-five Percent Confidence Intervals for Incrm l Validties

6 = P 2  - P 1  2" 1__ _ _ -_ _ _

School Lower limit Upper limit Lower limit Upper limit

Air Traffic Controller -0.003 0.043 -0.002 0.035
Fire Control Technician 0.012 0.076 0.013 0.059
Gunner's Mate 0.006 0.060 0.005 0.055
Electrician's Mate -0.001 0.081 -0.000 0.045

Note: Negative values are included to illustrate computations.

Step V: Calculate the Variance Across Studie of the Population Values of the Incremntal Valities in the
Unrestricted Population

Compute the estimate of the variance across studies of the population
values of the incremental validities in the unrestricted populations using the
formula given in Equation 18. Carry out the analysis once for a and once for
d*. That is, if a1, ... , ak are the a indices from the k studies to be combined,
let

Ti = d1 , T 2 =2, ... , Tk = ak
and

S2(Tl) = ;2(al), S2 (T 2 ) = o•(a2), ... , S2(Tk) = -0ak)

and apply the formula given in Equation 18. Then carry out the same process with
the d* values. If aa** ., are the a* indices from the k studies, use1 k
Equation 18 with

T1 = dj, ... , Tk = dk
and

S2((T=;2) ~2*
S2(T1) = (TO = o~w(dk).

To test the hypothesis that the incremental validity varies across studies,
compute the test statistic H using the computational formula given in Equation
19.
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Example

Again our example is based on uncorrected estimates d and d*. For both the
d and d* estimates, the variance components computed using Equation 18 were
estimated to be zero. This suggests that there is no variation in the parameters
representing incremental validity, when either differences or squared differences
in multiple correlations are used. All populations under study can be considered
to show the same increment in validity due to the added predictor variables.

In fact, both a values were actually slightly negative, though they were
very small. Actual values were -0.00015 for d and -0.00006 for d*.
Conventionally, however, such negative variance-component estimates are truncated
to zero.

Table 11 shows the terms used in the computation of the H statistics (also
the pooled estimates and their standard errors) for the two incremental validity
measures. The weight terms for the two measures (labeled wi and w!) are computed
as the inverses of the variances of each school's estimates. Each weight is then
multiplied by its respective incremental validity estimate and the square of the
estimate, as shown in Table 11.

Table 11
Example: Computation of the Summary Statistics

for Two Incremntal Validity Indices

d = R 2 - R1  d* __R2 - R2

School Weight(wi) widi widi 2 Weight(w!) w~d*

Air Traffic Controller 7353.29 147.07 2.94 11690.25 191.72 3.14
Fire Control Technician 3642.53 160.27 7.05 7376.92 263.92 9.44
Gunner's Mate 5293.70 174.69 5.76 6066.33 180.35 5.36
Electrician's Mate 2314.85 92.59 3.70 7616.13 168.32 3.72

Totals 18604.37 574.62 19.46 32749.64 804.30 21.67

The homogeneity test statistics for both measures of incremental validity
also support the finding of consistency in the magnitudes of the population
parameters. In each case, the test statistic H has a chi-square distribution
with three degrees of freedom under the null hypothesis of no variation in
population parameters. Using Equation 19, the homogeneity test is H - 1.714 (2
= .63, df = 3) for the differences in multiple correlations (i.e., the value
computed using the d estimates). The value of the test for the squared multiple
correlations is H = 1.915 (p = .59, df = 3). Neither value is significant even
at the most lenient conventional significance level (e.g., a - .10).

Step VI: Calcula-t the Combined Fstimate of Incremental Validity

The combined estimate of incremental validity is a weighted average of the
values from the individual studies. Compute the combined (weighted average)
estimate across studies of a and a* separately using the formula given in
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Equation 14, and use the formula in Equation 16 to compute the standard error of
each weighted average. First, let

T1= d, ., Tk - ak
and

S2 (Tl) - (a) ... , S2 (Tk) - 2(ak)

to combine the a values. Then letT, I Tk d
and s2(Tl) = •a[),... S2(Tk) -yr •(a k)
to combine the a* values.

Emaiple

The combined estimates of incremental validity are weighted averages of the
differences and of the squared differences shown in Tables 6 and 7. For both
measures of added validity, these averages can be considered to represent common
parameters, since the null hypothesis of no variation was retained for both. The
average weighted difference in multiple correlations is 0.031 with a standard
error of 0.007. The average difference in squared multiple correlations is 0.025
with a standard error of 0.006.

Step VU: Compute a Confidmce Interval fr the Incremental Validity

Use the pooled estimate of incremental validity and its standard error
.computed in Step VI to compute a confidence interval for the incremental
validity. If this confidence interval does not contain zero or, equivalently,
if the test given in Equation 17 leads to a significant Z value, reject the-
hypothesis of zero incremental validity.

Example

Ninety-five percent confidence intervals were computed using the two pooled
estimates of the validity increment. For the difference in multiple correlations,
the interval is

0.0166 < P2 - P1 < 0.0452.
The interval does not contain zero, which suggests that a significant increment
to the validity of prediction can be expected across all populations.
(Similarly, one can compute a Z test; for these data the value is Z - 4.21, p <
.001).

The confidence interval for the population difference in squared
correlations is

0.0137 5 P 2
2 - P1

2 < 0.0354,
and the test of the null hypothesis that the population squared difference equals
zero is Z = 4.44 (p < .0001). Again the results indicate a nonzero incremental
validity across schools.
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CONCLUSIONS

Pooling estimates across sites provides a viable strategy for estimating
the incremental validity. If a single sample is used in each site to assess
incremental validity, the test for the statistical significance of the pooled
estimate will have adequate power to detect increments in validity of .02 given
pooled sample sizes of N a 4,000.

RECOMMENDATION

Estimates of the incremental validity of alternative test batteries should
be based on pooled estimates derived from several samples, using the methods
outlined in this report.
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APPENDIX A

STATISTICAL ANALYSIS SYSTEM (SAS) PROGRAM
TO COMPUTE COMBINED SIGNIFICANCE TESTS
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SAS Program to Compute Combined Significance Tests

OPTIONS NOCENTER;
DATA ONE;
INPUT RSI RS2 A B N;
DIFF-RS2-RS1;
DF1-B-A;
DF2-N-B-1;
F-DIFF*DF2/(DF1*(1-RS2));
P=1-PROBF(F,DF1,DF2);
Z=PROBIT(P);
LOGP=LOG(P);

CARDS;
.160 .176 10 20 470
.144 .180 10 20 530
.194 .224 10 20 460
.062 .084 10 20 700

PROC PRINT; VAR RS1 RS2 N A B F P;
PROC PRINT; VAR DIFF Z LOGP;
PROC MEANS NOPRINT SUM N;

VAR Z LOGP;
OUTPUT OUT=SUMS SUM=SUMZ SUML N=K;

DATA TCS; SET SUMS;
ZS=SUMZ/SQRT(K); CF=-2*SUML;
PS=1-PROBNORM(ZS); PC=1-PROBCHI(CF,2*K);
ENDSAS;
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APPENDIX B

A SIMULATION STUDY OF THE DISTRIBUTION OF
THE DIFFERENCE IN SQUARED MULTIPLE CORRELATIONS
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A Simulation Study of the Distribution of
the Difference in Squared Multiple Correlations1

Background

The main body of this report has presented asymptotic formulas for the variance in the difference in
multiple correlations or squared multiple correlations, both for the case of independent samples and for the
case when the two correlations are based on the same sample but different sets of predictors. The latter
case breaks down into three sub-cases, the first two of which are most important:

(a) the second set of predictors includes the first as a subset (IS)

(b) the two sets of predictors are disjoint (DJ)
(c) the two predictor sets overlap but are neither inclusive subsets nor disjoint.
The formulas were intended to apply to several current studies of the incremental validity of adding

new aptitude tests to the 10-test Armed Services Vocational Aptitude Battery (ASVAB). In a recent study,
Wolfe (1991) reported the validities for predicting school performance in nine Navy technical training
schools when four new precidctors were added to the ASVAB. Sample sizes ranged from 97 to 929. The
validity increments were 0, 0, .001, .007*, .014, .014**, .018**, .029*, and .051**. Subsequent
significance tests for the increase in validity from adding a single predictor to the ASVAB showed highly
significant improvement for increases as small as .004 when the sample size was 929. The mean validity
increase across schools ranged from .002 to .006 when only one predictor was added to the ASVAB. This
is an example of Case a described in the first paragraph.

In the same study, an alternate form of the ASVAB was re-administered after enlistment, and its vali-
dity was compared with the pre-enlistment ASVAB. After correction for range restriction, the two bat-
teries differed by only .009, on the average. This is an example of Case b comparison.

Problem
The variance formulas assume asymptotic normality of the difference in squared multiple correla-

tions. But in Case a, the sample difference in squared correlations is non-negative. If the true population
difference is zero, the sample differences will approach zero as the sample size increases, while remaining
non-negative. Such a distribution cannot be normal. If the population difference is non-zero but small, we
can expect slow convergence toward normality as the sample size increases. The rate at which the sample
difference approaches normality will determine whether the asymptotic approximations given earlier in this
report will have practical utility.

Approach
In order to study the behavior of the asymptotic formulas, simulations were performed with six dif-

ferent sets of artificially specified population parameters and three different sample sizes. Table B-I shows
the characteristics of different samples. The samples for inclusive predictor subsets are labeled with the
initial letters IS, and the disjoint sets with the initial letters DJ. The two letters are followed by three digits
indicating the true difference in squared multiple correlation. Sample sizes of 100, 400, and 1000 are desig-
nated A, B, and C respectively.

For each simulated sample, uniform pseudo-random numbers were generated by a method due to
L'Ecuyer (1988). These were converted to a Gaussian (0,1) distribution by a circular transformation
described by Knuth (1981, p. 116ff.). Finally, a Cholesky factorization of the population correlation matrix
of predictors and criterion was used to generate a multivariate normal distribution of raw scores.

1This appendix was written by John H. Wolfe.
* p<.0 5 *Op<.O1
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There were 1000 replications for each sample size and each population correlation matrix. For exam-
ple, set IS003B consisted of 1000 samples of 400 observations drawn from a population where the rue
difference in the squared multiple correlation was .003.

Table B-I. Description of Simulation Samples

Samples N rl12 •ly r2y R I R2

Inclusive Predictor Sets: (x1), (x1, x 2)
IS000 1000 .50 .400 .200 .4000 .4000
IS003 A,B,C 100,400, 1000 .30 .500 .200 .5000 .5027
IS006 A,B,C 100,400, 1000 .60 .400 .300 .4000 .4070
IS013 A,B,C 100,400, 1000 .50 .400 .300 .4000 .4163

Disjoint Predictor Sets: (x1 ), [x2)
DJO00 100 .99 .400 .400 .4000 .4000
DJO10 A,B,C 100,400, 1000 .70 .455 .466 .4550 .4660

In each sample, the sample correlation matrix was computed, along with the multiple correlations,
their difference, and the difference's asymptotic variance estimated from sample values. These were com-
pared with the asymptotic variance estimated from population values, and with the standard deviation
observed across replications.

Results

Table B-2 compares the means and standard deviations of squared correlation differences with their
theoretical values. Here 8" = the population difference in squared multiple correlatioas and d" is its sam-
ple value. ard. is the theoretical asymptotic standard deviation of d" based on population values (Result 3,

Equation 26), and SDEVd. is the standard deviation observed across the 1000 replications. Note the singu-
larities in the first (IS000) sample, where the population multiple correlations are identical. Asymptotic
normal theory breaks down in this case by predicting a zero value for ad.. Column six measures the devia-

tion of d" from its theoretical value; the denominator is the theoretical standard error of d" across 1000
replications. If the theory is correct, column six will be a normal (0, 1) d&viate.

The sixth column of Table B-2 is a significance test for the difference between d" and its theoretical
value. Except for the DJOIOA sets, there is no significant deviation of d" from its theoretical value.
SDEVd. is compared with its theoretical value in the last two columns of Table B-2. All but the last two
inclusive subset samples have significantly greater variance than asymptotic theory predicts. The disjoint
sets are in substantial agreement with theory.

Table B-3 displays various measures of normality for d'. All of the inclusive predictor subsets are
non-normal, even for large samples, while all of the disjoint sets are normal..

Table B-4 shows the behavior of 6d., the sample estimates of the standard deviation of d'. computed

from Eq. (8) using the replication's sample correlations. Each replication has a different €e- This should

be compared with crd in Table B-2, which uses population correlations in a similar formula of Result 3.
and with SDEVd. in Table B-2, which is an observed value across replications. Column 6 shows the corre-
lation between d" and a,, 2 . In the usual sampling theory based on normal parent distributions, these would
be expected to be independent, not correlated. This independence is essential for using Student's t-
distribution to establish confidence intervals. Here the correlations are greater than .99 for all inclusive
subsets. (Probably the only reason they are not 1.00 is rounding error in the values of d" and 6d., which

were rounded to 4 digits.) The distribution of the T-statistic is shown in the right-most four columns of
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Table B-2. Means and Standard Deviations of Squared-Correlation Differences

Sample N 8" 8"+ Bias d ad. SDEVd. (SDEVd. 2) P(49)

Inclusive Predictor Sets
IS000 1000 0.000000 0.000841 0.000900 ** 0.000000 0.001239 ** 0
IS003 A 100 0.002747 0.010280 0.010082 -0.690111 0.009050 0.013669 2.281392 < 10-100
IS003 B 400 0.002747 0.004609 0.004767 1.106663 0.004525 0.005339 1.392384 < 10-14

IS003 C 1000 0.002747 0.003490 0.003514 0.258851 0.002862 0.003086 1.162848 .0003
IS006 A 100 0.005625 0.013949 0.013412 -1.242703 0.013670 0.017656 1.668217 < 10-3
IS006 B 400 0.005625 0.007685 0.007488 -0.910621 0.006835 0.007296 1.139543 .0014
[S006 C 1000 0.005625 0.006447 0.006422 -0.185840 0.004323 0.004555 1.110381 .0083
IS013 A 100 0.013333 0.021404 0.022382 1.480195 0.020880 0.024662 1.395064 < 10-14

IS013 B 400 0.013333 0.015330 0.015074 -0.774696 0.010440 0.010393 0.990961 .5744
IS013 C 1000 0.013333 0.014130 0.014181 0.241779 0.006603 0.006455 0.955796 .8384

Disjoint Predictor Sets
DJO00 100 0.000000 0.000000 -0.000061 -0.185280 0.010360 0.010459 1.019283 .3288
DJOIO A 100 0.010131 0.009914 0.004970 -2.520654 0.062030 0.064624 1.085380 .0307
DJO1O B 400 0.010131 0.010077 0.009863 -0.217976 0.031015 0.029938 0.931754 .9390
DJOIOC 1000 0.010131 0.010109 0.010460 0.565348 0.019616 0.019997 1.039268 .1891

Table B-3. Normality of Squared-Correlation Differences

Sample N 80 Skewness Kurtosis Kolomogorov D P

Inclusive Predictor Sets
IS000 1000 0 2.3991 6.9438 .2338 <.01
IS003A 100 .0027 3.0044 16.5396 .2304 <.01
IS003B 400 .0027 1.8945 4.8198 .1860 <.01
IS003C 1000 .0027 1.4189 2.6474 .1274 <.01
IS006A 100 .0056 2.4313 8.1191 .2237 <.01
IS006B 400 .0056 1.7039 4.0798 .1524 <.01
IS006C 1000 .0056 1.0519 1.5267 .0826 <.01
IS013A 100 .0133 1.7557 3.6659 .1821 <.01
IS013B 400 .0133 .9537 1.267 .0735 <.01
IS013C 1000 .0133 .5916 .5317 .0442 <.01

Disjoint Predictor Sets
DJO00 100 0 .0325 .0058 .2874 >. 15
DJOIOA 100 .0101 .0872 .3230 .0263 .09
DJO1OB 400 .0101 -.0180 .0241 .0197 >.15
DJOIOC 1000 .0101 -.0255 .1784 .0197 >.15

Table B-4. Here d" is the value of d corrected for bias using the Wherry (1931) shrinkage formula. Nor-
mal theory would predict that T would have zero mean, unit standard deviation, and no skewness or kur-
tosis. The obtained values for disjoint sets are in line with these expectations, but not for the inclusive sub-
sets.

B-3



Table B-4. Estimated Errors and T-ratios for Squared-Correlation Differences

Sample (d d. ) T = (8" -dr)/d.
Mean Std. Dev. I Mean Std. Dev. Skewness Kurtosis

Inclusive Predictor Sets
ISOOO 1000 .0000 .001395 .001034 .9992 1.5284 5.4964 8.4747 95.7577
IS003A 100 .0027 .013778 .009907 .9914 2.2943 9.7766 9.6427 111.3506
IS003B 400 .0027 .004995 .003169 .9979 2.4773 15.4916 16.10133 297.4342
IS003C 1000 .0027 .002896 .001430 .9989 1.4652 6.1591 8.0970 83.2858
IS006A 100 .0056 .016744 .011741 .9922 3.3358 15.0184 8.9495 95.4991
IS006B 400 .0056 .006870 .003715 .9982 1.9732 12.0017 15.0540 266.6279
IS006C 1000 .0056 .004287 .001667 .9990 .8876 4.9319 14.4417 259.7843
IS013A 100 .0133 .022233 .013608 .9920 4.2551 32.4311 15.5740 289.0354
IS013B 400 .0133 .010305 .003907 .9971 .8270 4.2313 13.2275 218.1110
IS013C 1000 .0133 .006601 .001565 .9979 .2781 1.2850 2.1404 9.6911

Disjoint Predictor Sets
DJ000 100 .0000 .010196 .001742 -.0408 -.0002 .9976 -.0262 -.2136
DJO1OA 100 .0101 .060657 .006639 .0274 .0888 1.0672 -.0544 .1019
DJO0OB 400 .0101 .030891 .001664 .0018 .0070 .9685 .0098 -.0170
DJO0OC 1000 .0101 .019588 .000657 .0067 -.0185 1.0205 .0422 .1598

Finally, Table B-5 shows what would happen if one tried to base confidence intervals on the asymp-
totic estimates of variance. The middle three columns show the 5 percent, the median, and the 95 percent
values of the T-statistic observed among the 1000 replications of a sample. Normal theory would predict
these values to be -1.645, 0, and +1.645. The disjoint predictor samples come close, but the inclusive pred-
ictor subsets do not. The last two columns of Table B-5 show the number of replications in which 5' falls
outside of a "confidence interval" of d ±1. 96 ad.. Normal theory would expect 25±10 at each end. The
observed frequencies for the disjoint sets are close, but the inclusive subsets are grossly deviant from nor-
mal theory.

Discussion
The asymptotic formulas derived in the main body of this report seem to work very well when the

predictor sets are disjoint, but are less satisfactory, even on large samples, when one set includes another.
Several alternative remedies could be tried:

Use the mean squared error (MSE) instead of multiple correlation. Sympson (1979) suggested this
approach because, when adjusted for degrees of freedom, the difference in MSEs can be negative. How-
ever, the difference in such MSEs is proportional to the difference in Wherry-corrected squared multiple
correlations (Wherry, 1931). Although not shown in the tables, the Wherry-corrected values had skewness
and kurtosis values that agreed with the uncorrected values to two decimals in most of these simulations.

Transform the multiple correlations. A Fisher z-transform or other transform will still allow the
difference to approach its population value with increasing sample size, while remaining non-negative. If
the population difference is zero, the distribution of the difference cannot be normal.

Transform the difference in squared multiple correlations. Since the distributions are sometimes
almost J-shaped, they are difficult to normalize. It would be desirable if a variance-stabilizing transforma-
tion could be found to eliminate the large correlation between d" and a. 2, as well as normalize d.
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Table B-5. Confidence Intervals for Squared-Correlation Differences

T = (8" -d*,)/o¢ Frequenct

Sample N 5% I 50% 95% <" <d:-1.966, 8" > d',-1.96,

Inclusive Predictor Sets
IS000 1000 .0000 -.7699 .3616 6.2172 6 171
IS003A 100 .0027 -.8783 .4119 7.7085 1 21
IS003B 400 .0027 -1.0196 .3106 8.0732 2 227

IS003C 1000 .0027 -1.1226 .2455 6.3724 2 159
IS006A 100 .0056 -.9414 .4984 10.0743 3 228
IS006B 400 .0056 -1.0896 .3175 6.8493 2 199

IS006C 1000 .0056 -1.1728 .2011 3.6934 4 141
IS013A 100 .0133 -1.1432 .3493 10.1649 5 207
IS013B 400 .0133 -1.1508 .1914 3.8499 3 137
IS013C 1000 .0133 -1.2847 .0838 2.3916 5 78

Disjoint Predictor Sets
DJO00 100 .0000 -1.6850 -.0253 1.6430 21 19
DJ010A 100 .0101 -1.7213 .1089 1.9215 31 48
DJOIOB 400 .0101 -1.6067 .0261 1.6441 22 26
DJ010C 1000 .0101 -1.6524 -.0467 1.6052 30 26

Use resampling techniques. One could, of course, abandon attempts to obtain explicit mathematical
expressions for the sample variance of multiple correlation differences and use resampling techniques to
estimate variances in each data sample. While it may be useful in practice, such an approach is beyond the
scope of this paper.

Use other sampling distributions. The inadequacy of the above approaches almost forces us to use
non-Gaussian sampling distributions. These are outlined in the next section.

Non-normal Sampling Theory for Correlation Differences

Let 8 = d with sample estimate d = . (8 is often called the effect size.) Let

u = b - a and v = N - b -I be the degrees of freedom. When 8" = 0, the distribution of (-V)d is exactly cen-uU

tral F..,. When 8" > 0, the distribution is a non-central F with non-centrality parameter X = (N-a)

(Cohen, 1988, p. 55 1).2 The mean of F is given by

From this, it is readily seen that an unbiased estimate of 8 is

b-a (N-b-3 F -1 ). (B-2)

Or, in terms of d, an unbiased estimate of 8 is

(N-b-3)-b +a. (B-3)
-- N-a

2Lee(1971) has developed more accurate non-entnl F approximations for the special case when a =0 by fitting the first

three moments.
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For N > 100, the non-central X2 will serve nearly as well. Here, X! = vd with the same non-

centrality parameter X. The mean of a non-central X2 is given by

as + X. (B-4)

Then the point estimate for 8 is

z2-b+a(B5)Nv--a *•5

Or,
S=(N-b-1)d -b+a. (B-6)

N,-a

In comparing this formula with the one for the non-central F, it is seen that the X2-based estimate of 8 is
biased upward by 2d1(N--a). However, it is easier to average results across samples and compute
confidence intervals with the non-central X2 distribution than with the non-central F.

Suppose that there are k such X2 populations with possibly different values of 8. Then the sum

S = (Ni -b -l)jj(B7

has a non-central X2 distribution with ku degrees of freedom and non-centrality parameter

X=,ýN-)j (B-8)

A weighted mean of the Si across the different populations can be defined as 8= X where

N = ,t=i. Then a nearly unbiased estimate of 8= Mean (Si). Hence,

=S -k(baa) (B-9)

The value of S can be used to compute the upper and lower 2.5 percent limits for a confidence inter-
val .0g X 5 X .975 by means of Applied Statistics algorithm 170 (Narula & Desu, 1981). From this, it is
evident that a 95 percent confidence interval can be established around the weighted mean of 8 with

X025  .975 (B-10)

There is some difficulty in relating these results to d" itself. Since d is a function of both R2 and
d*, the relation between d and d" is not one to one. The transformation w = -log(l-R 2) may be useful
here. 3 Differentiating w (or expanding it in a Taylor series) shows that, to a first order approximation,
Aw 9-w- = d. Thus it may be possible to develop all of the results in the w metric rather than the R
metric.

Simulation Results with Non-normal Sampling Distributions

Tables B-6 and B-7 compare the observed and theoretical values of the first four moments of the
non-central F model of d and the non-central j 2 model of Aw, respectively. It is evident that both models
fit the first three moments rather well, and that the non-central F model fits the fourth moment better than
the non-central X2. Results for the non-central X2 model of d are not shown, but were were no better than
those shown in Table B-7; in fact the ratios of observed to theoretical variances deviated slightly more
from 1 than they did in Table B-7.

3 It is interesting to note that Moschopoulos (1983) has shown that w, raised to a suitable power is approximately
Gaussian.
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Table B-6. Observed vs. Theoretical Moments of Non-Central F fitted to

Mean Variance Skewness Kurtosis

Sample N 8" Sample Theory Sample Theory Ratio Sample Theory Sample Theory

IS000 1000 0. 0.96 1.00 2.02 2.01 1.01 2.75 2.84 9.66 12.15
IS003A 100 0.0027 1.43 1.39 3.91 3.72 1.05 2.54 2.74 8.20 11.32
IS003B 400 0.0027 2.56 2A8 8.51 8.02 1.06 1.86 1.99 3.95 5.56
IS003C 1000 0.0027 4.86 4.68 17.48 16.84 1.04 1.31 1A2 2.31 2.77
IS006A 100 0.0056 1.86 1.70 6.00 5.04 1.19 2.33 2.51 6.49 9.37
IS006B 400 0.0056 3.69 3.71 11.88 13.02 0.91 1.49 1.62 3.36 3.66
IS006C 1000 0.0056 7.82 7.75 29.89 29.24 1.02 1.06 1.10 1.28 1.66
IS013A 100 0.0133 2.58 2.65 8.41 9.08 0.93 1.87 2.04 4.32 6.06
IS013B 400 0.0133 7.49 7.47 28.74 28.45 1.01 1.13 1.15 1.80 1.83
IS013C 1000 0.0133 17.35 17.15 70.03 67.45 1.04 0.70 0.75 0.52 0.77

Table B-7. Observed vs. Theoretical Moments of Non-Central X2 fitted to Alog(1-R 2 )

Mean Variance Skewness Kurtosis

Sample N 6' Sample Theory Sample Theory Ratio Sample Theory Sample Theory

IS000 1000 0. 0.96 1.00 2.01 2.00 1.01 2.74 2.83 9.59 10.00
IS003A 100 0.0027 1.40 1.36 3.62 3.46 1.05 2.43 2.60 7.43 7.87
IS003B 400 0.0027 2.54 2.47 8.29 7.87 1.05 1.83 1.96 3.80 3.32
IS003C 1000 0.0027 4.84 4.68 17.22 16.70 1.03 1.30 1.41 2.22 0.70
IS006A 100 0.0056 1.82 1.67 5A7 4.66 1.17 2.23 2.38 5.79 6.09
[S006B 400 0.0056 3.66 3.68 11.51 12.72 0.90 1.45 1.59 3.12 1.48
IS006C 1000 0.0056 7.78 7.71 29.26 28.85 1.01 1.04 1.09 1.22 -0.39
IS013A 100 0.0133 2.50 2.58 7.58 8.34 0.91 1.76 1.91 3.68 3.07
IS013B 400 0.0133 7.39 7.38 27.29 27.54 0.99 1.08 1.12 1.59 -0.32
IS013C 1000 0.0133 17.17 16.98 67.28 65.94 1.02 0.68 0.73 0.46 -1.28

Applied Statistics algorithm 170 (Narula & Desu, 1981) for the non-central X2 was used to compute
95 percent confidence intervals based on the sample value of d in each replication. The numbers of repli-
cations (out of a 1000) for which the population values of 6 or Aw fell above or below the confidence inter-
vals were tabulated in Table B-8. Applying the binomial distribution to the frequencies, (N = 1000, p =
.025), the observed frequency should lie in the range 25±10 for 95.8 percent of the ten simulated popula-
tions at the upper end and 95.8 percent of the ten populations at the lower end. Frequencies that lie outside
the range 25±10 are marked with an asterisk.

For the X2 model of d, two of the ten populations had 95 percent confidence intervals that were too
often above 8 and three of them were too often low. For the X2 model of Aw, none of the ten populations
had 95 percent confidence intervals that were too often above the population value of Aw and three of them
were too often low.

When 5" = 0, there were no sample estimates of the upper 2.5 percent limit that were less than the
true value, zero. Every sample estimate of the lower 2.5 percent limit was greater than zero, usually in the
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Table B-8. Frequency of Samples with Population Values Falling
Outside 95% Confidence Intervals based on Non-central X2 Models

d" Alog (1-R 2)

N Below N Above N Below N Above
2.5% Limit 97.5% Limit 2.5% Limit 97.5% Limit

IS000 1000 0. 30 0 30 0*
IS003A 100 0.0027 27 27 27 27
IS003B 400 0.0027 36* 32 33 32
IS003C 1000 0.0027 27 21 25 21
IS006A 100 0.0056 41* 13* 34 13*
IS006B 400 0.0056 21 29 19 29
1S006C 1000 0.0056 23 22 23 22
IS013A 100 0.0133 27 39* 25 39*
IS013B 400 0.0133 25 25 23 25
IS013C 1000 0.0133 28 21 26 21

eighth decimal place. This latter effect was corrected by subtracting 10-6 from the lower 2.5 percent limits
computed by the program.

Although the X2 approximations for the confidence intervals do not perform as well as might be
expected for non-central F formulas in these simulations, they work quite well for the largest sample sizes.
In any case, they are a substantial improvement over the normality-based confidence intervals in Table B-5.

Example

Table B-9 shows the application of these methods to the illustrative data in Tables 7, 10, and 11 in
the main body of the report. The confidence intervals and unbiased estimates are based on the non-central
chi-square distribution. The pi values at the right-most column are based on the central chi-square distri-
bution, and are close to the F probabilities in Table 7. The probability for the combined sample, .004,
agrees with the Fisher value previously given.

Table B-9. Ninety -Five Percent Confidence Intervals for Effect Sizes

School Effect Size Unbiased Effect Lower Limit Upper Limit pA
d" A 2.5w 97.5%

Air Traffic Controller .0199 -.0024 .0000 .0275 .538
Fire Control Technician .0431 .0228 .0014 .0642 .016
Gunner's Mate .0388 .0236 .0045 .0575 .003
Electrician's Mate .0236 .0007 .0000 .0337 .410

Combined Sample .0319 .0130 .0027 .0283 .004
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Conclusion
Asymptotic normal theory works well when the predictor sets are disjoint. When one predictor set

includes another, then non-central F or chi-square distributions may be used to establish confidence inter-
vals for the effect sizes in each sample, and for the mean effect size across different samples. Unfor-
tunately, it is not clear how to test hypotheses concerning differences among populations. Adjusting effect
sizes for artifacts of range restriction or criterion unreliability will require further research.
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